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ABSTRACT: We present a novel computer user authentication technique using hidden Markov 

model (HMM) through keystroke dynamics. We propose: (i) modified HMM parameters to 

reduce the order of computations involved in the forward (or backward) procedure by 

2T (reduction is from 32TN sc  to TNsc
2  where T  and scN  represents the length of the 

keystroke pattern and the number of states of an HMM per character respectively) and          

(ii) a strategy for estimating the number of states and the number of training iterations of an 

HMM. For each user, a distinct HMM is developed using modified Rabiner’s re-estimation 

formulae of multiple observation sequences on six reference keystroke patterns. Authentication 

of a user is made in two stages: (i) the user identification stage, wherein we determine the user 

with the maximum probability score for the given keystroke pattern and (ii) the user 

verification stage, wherein we determine the probability score for the given keystroke pattern 

for a claimed user. Finally, a decision about the authenticity of a user is made using the results 

of both the stages and threshold criteria. Data for our experiments was collected from a group 

of 43 users; for training data, each user provided a set of nine reference keystroke patterns for 

the string “master of science in computer science,” and for testing data, the number of 

keystroke patterns for each user varied from 0 to 102 with a total of 873 keystroke patterns.  

We obtained the best false accept rate of 0.74 % when the false reject rate was 8.06 % and the 

area under the receiver operating characteristics curve was 0.99603. 

Keywords: Keystroke dynamics, Computer Security, User identification, User verification, 

User authentication, Hidden Markov Model, Receiver Operating Characteristics 
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ACRONYMS 

� HMM   Hidden Markov Model 

� TP  True Positive 

� TN  True Negative 

� FAR  False Accept Rate 

� FRR  False Reject Rate 

� EER   Equal Error Rate 

� ROC  Receiver Operating Characteristics  

� AUC  Area under Curve 

1 INTRODUCTION 
In computer security, user authentication is the process by which a user attempts to 

confirm his/her claimed identity by providing relevant information such as a password. Different 

possible cases in a user authentication system are shown in Illustration 1. 

Illustration 1: In user authentication system, for a given attempt by a user, any one of 

the following four cases can happen where 1U  is the registered user (user known to the 

system) and 2U  is the unregistered user (user unknown to the system): 

Case 1: 1U  claims as 1U  and if it gets accepted then it is termed as a True Positive  

Case 2: 1U  claims as 1U  and if it gets rejected then it is termed as a False Reject 

Case 3: 2U  claims as 1U  and if it gets accepted then it is termed as a False Accept  

Case 4: 2U  claims as 1U  and if it gets rejected then it is termed as a True Negative 

We can see from Illustration 1 that an authentication system should have a low FAR (this 

is also refereed to as a Type II error [5])  and a low FRR (this is also refereed to as a Type I error 

[5]). In addition, the ROC [12] curve can be used to visualize the threshold independent 

performance of an authentication system. To compare the performance of two or more 

authentication systems, the AUC [12] value can be used, where the AUC value is calculated by 

finding the area under the ROC curve (the higher the AUC value the better is the authentication 

system). 
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1.1 Keystroke Dynamics for User Authentication 

Keystroke dynamics [11] is a behavioral pattern exhibited by an individual while typing 

on a keyboard. User authentication through keystroke dynamics is appealing for many reasons 

such as: (i) it is not intrusive, and (ii) it is relatively inexpensive to implement, since the only 

hardware required is the computer [8]. Researchers have developed user authentication systems 

through keystroke dynamics using various pattern recognition techniques like neural networks 

[6, 19, 23, 24], statistical classification techniques [7, 14, 27, 29], decision trees [33], and 

others [9, 14]. Most of these systems cannot add or delete user(s) without retraining the entire 

system. But in this paper, we propose a method which can: (i) dynamically add or remove 

users without retraining the entire system, and (ii) adapt to the changing typing patterns of the 

user(s). 

1.2 Motivation for using Hidden Markov Models 

HMMs have proven to be useful in a variety of real world applications where 

considerations for uncertainty are crucial [15]. With an ability to handle the variability in 

speech signals, HMMs have proved to be an efficient model for statistically modeling speech 

signals which can be seen from the extensive application of HMMs for speech recognition such 

as methods proposed in [2-4, 17, 18, 25]. In the context of user authentication through 

keystroke dynamics, keystroke events have a non-deterministic nature; hence, modeling 

keystroke patterns with HMMs, which has the ability of handling stochastic process, can be 

used to recognize the keystroke patterns of a user.  

1.3 A Brief Introduction to the Proposed Method 

Initially, keystroke patterns are mapped to the speech signals and the parameters of the 

HMM are defined according to the mapping.  But in Section 4.3, we will see that the resulting 

model has a very high number of computations. Therefore, in order to reduce the number of 

computations, we modified the two-dimensional state transition matrix into a three-

dimensional matrix by eliminating the state transitions with zero probabilities. Other 

parameters of the HMM are also modified accordingly. 

The proposed method has two phases: (1) the training phase and (2) the user 

authentication phase. In the training phase, a distinct HMM is modeled for each registered user 

with the modified HMM parameters, which is trained on six reference keystroke patterns using 

the modified Rabiner’s re-estimation formulae of multiple observation sequences. While 
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training, the number of states and the number of training iterations of an HMM is determined 

using an estimation strategy. The user authentication phase consists of two stages: (i) the user 

identification stage and (ii) the user verification stage. In the user identification stage, a one-to-

many search is done to determine the user with the maximum probability score for the given 

keystroke pattern, and in the user verification stage, the probability score of the claimed user 

for the given keystroke pattern is determined. Finally, the decision about the authenticity of a 

user is made using the results of both the stages and threshold criteria. 

Testing of our method is done on the same data set on which Sheng et al. [33] tested 

their method. The AUC [12] value obtained by our method is 0.99603 and by the Sheng et al. 

[33] method is 0.98873 (calculated from the error rates given in [33]). Furthermore, for 

evaluating the effectiveness of our method, we created three data sets by changing the number 

of registered/unregistered users. These three data sets consist of 43, 36, 25 registered users and 

0, 7, 18 unregistered users respectively. We observed that the AUC value for all the sets is 

almost the same, which indicates that the average performance of the method did not change 

with a change in the number of registered/unregistered users. 

1.4 Contributions of this Paper 

Contributions of this paper are enumerated as follows:  

(1) Developing a novel user authentication technique using the HMM 

(2) Modifying the HMM parameters for reducing the order of computations (by 2T where T  

represents the length of the keystroke pattern) involved in the forward-backward procedure 

of the HMM as compared to the method proposed by Rabiner in [28] 

(3) Developing a strategy for estimating the number of states and the number of training 

iterations of an HMM 

(4) Adding and removing of user(s) without retraining the entire system 

(5) Updating the users’ templates according to the changing typing patterns of the users 

1.5 Organization of this Paper 

The rest of the paper is organized as follows: Section 2 deals with the data collection 

for our method; Section 3 deals with a brief introduction to HMMs; Section 4 deals with the 

mapping of the HMM parameters to keystroke dynamics; Section 5 deals with the procedure 

for training an HMM for each user; Section 6 describes the procedure for user authentication; 
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experimental results are discussed in Section 7; finally, analysis of our method is given in 

Section 8 and conclusion and future work is discussed in Section 9.  

2 DATA COLLECTION 
The data set we used in our experiment is the same as that of Sheng et al. [33].                 

For collecting training and testing data sets, an experiment was conducted from November to 

December 2002. Forty-three users (labeled as user 1 to user 43) in the experiment provided a 

set of nine keystroke patterns (referred to as reference patterns) for the string, “master of 

science in computer science,” to set up an account. However, the number of test patterns for 

each user varied from 0 to 102 with a total of 873 patterns.  

2.1 Data Preprocessing 

For each keystroke pattern, we collected key press and key release times for all the 

characters. From key press and key release times, the following four features can be extracted: 

(1) key hold time, (2) key press latency, (3) key release latency, and (4) key interval time as 

shown in Figure 1.  

            
Figure 1: Determination of key hold times from the key press and key release times 

for the characters ,'m'  ,'a'  and 's'  of the string "mas"  

Illustration 2:  As shown in Figure 1, timing data captured for the string ""mas  are: 

key press and key release times for the characters ,''m  ,''a  and '.'s  Using key press and key 

release times: (1) key hold times are determined using the formula: ,mmm KPKRKH −=         

(2) key press latencies are determined using the formula: ,mama KPKPKPL −=  (3) key release 

latencies are determined using the formula: ,mama KRKRKRL −=  and (4) key interval times 

are determined using the formula: ,KRKPKI mama −−−−====  where ,mKH  ,mKR  mKP  represents 

the key hold, key release, and key press times for the character ''m  respectively, and  ,aKP  

aKR represents the key press and key release times for the character ''a respectively, and 

Time 

mKH
aKH sKH

mKP mKR aKP aKR sKP sKR
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,maKPL  ,maKRL  and maKI represents key press latency, key release latency, and key interval 

time between the characters ''m and ''a  respectively. 

2.2 Feature Vector 

Studies indicate that key hold times are more effective than key press latencies, key 

release latencies and key interval times for user authentication [16, 22, 26]. Accordingly, in our 

method, we used only key hold times for our feature vector. Key hold times for the space 

characters were not considered because while typing the space character, the user may pause 

for recollection of what has to be typed next. Thus, for each keystroke pattern, we have 32 key 

hold times which constitute our feature vector.  

3 BACKGROUND1 

3.1 A Brief Introduction to Hidden Markov Models 

An HMM is a finite state machine where the system being modeled is assumed to be a 

Markov process with unknown parameters, where the unknown parameters are determined 

from the observable parameters of the system [28].  

Definition 1: An HMM λ  is a five-tuple ),,,,( πBAVS  where S  represents the set of 

states, V  represents the set of observation symbols, A  represents the state transition 

probability matrix, B  represents the observation symbol probability distribution and π  

represents the initial state matrix. },B,A{ πλ ====  is the compact notation to indicate the 

complete parameter set of HMM.  

Notations of various terms related to Definition 1 are: (1) }...,{ 21 NSSSS =  where N  

denotes the number of states and a state at time t  is denoted as ,qt  (2) },....,{ 21 MVVVV =  

where M  denotes the number of distinct observation symbols, and an observation sequence is 

represented as },....,{ 21 ToooO = where sub-script T  denotes the number of observations in an 

observation sequence, and an observation symbol at time t  is denoted as ,to  (3) }{ ijaA =  

where ija  represents the state transition probability from state i  to state ,j  (4) )}({ tj obB =  

where )( tj ob  represents the probability of observing symbol to  in state ,j  and (5) }{ iππ =  

where iπ  represents the initial state probability of state i  ][( 1qSP ii ==π  where )1 Ni ≤≤  . 

1All the material given in this section is based on [28] 
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Illustration 3:  Figure 2 illustrates an HMM with 4 states labeled as S1, S2, S3 and S4; 

Figure 3 illustrates the state transitions and observation symbols in an HMM where the 

probability of transition from state iS  to state jS  is ija , and the probability of observing 

symbols mV  and nV  from the respective states iS  and jS is given by )( ti ob  and 

)( 1+tj ob respectively.  

 

              
 

3.2 Three Basic Problems of HMMs 

For HMMs to be useful in real world applications, the following three problems must 

be solved:  

Problem 1: Given an observation sequence O  and a model λ , how do we efficiently 

compute )/( λOP  

Problem 2: Given an observation sequence O  and a model λ , how do we choose the 

corresponding state sequence TqqqQ ,...., 21=  which best explains the observations 

Problem 3: How do we adjust the model parameters },,{ πλ BA=  to maximize )/( λOP  

Problem 1 is an evaluation problem which aims at finding the likelihood of an 

observation sequence produced by a given model. The solution of this problem can be used in 

pattern recognition applications. For example, if we are to choose a model among several 

competing models, the solution of this problem gives the likelihood score and helps in finding 

the best matching model.  Problem 2 tries to uncover the hidden part of the HMMs, i.e., to find 

Si Sj 
 

State Transition 

Probability = ija  

)( ti ob  )( 1+tj ob  

mt Vo= nt Vo =+1

t t+1 S1 

S2 
S4 
 

S3 
a31 a13

a24 
a42

a34 

a43 
a21 

a12 
a14 

a41 a23 

a32 

a33a11

a22 

a44 

Figure 2: Illustration of an HMM with 
four states labeled as S1, S2, S3 and S4 

 

Figure 3: Illustration of State Transitions 
and Observation Symbols in an HMM 
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the correct state sequence.  But in our model, as we will see in the next section, the states do 

not have any physical significance. So, we do not address this problem. Problem 3 is a 

parameter optimization problem wherein, the likelihood of an observation sequence on a given 

model is maximized by adjusting the model parameters ),,( πBA . The solution to this problem 

is used in training HMMs. 

To solve the above-mentioned problems, forward and backward variables (defined 

below) are used. 

Definition 2: Forward variable )( jtα  represents the probability of the partial 

observation sequence, ',.......,' 21 tooo  and state j  at time t  given a model .λ  It is estimated 

using the forward procedure as shown below: 

 

 

 

 

 

 

The termination step of the forward procedure gives the solution for Problem 1. 

Definition 3: Backward variable )( jtβ  represents the probability of the partial 

observation sequence, ',.......,' 21 Ttt ooo ++  and state j  at time t  given a model .λ  It is estimated 

using the backward procedure as shown below: 

 

 

 

 

 

In addition to the forward and backward variables, variable γ  is also used in solving 

the re-estimation problem i.e., Problem 3. 

Forward Procedure 
 

1) Initialization:  ),()( 11 obi iiπα =    Ni ≤≤1  

2)  Induction:   ),()()( 1
1

1 +
=

+ �
�

�
�
�

�= � tj

N

i
ijtt obaij αα  

11
1

−≤≤
≤≤
Tt

Nj
 

3) Termination:  �
=

=
N

i
T iOP

1

)()/( αλ   

Backward Procedure: 
 

1) Initialization: ,1)( =iTβ     Ni ≤≤1  
 

2) Induction:  ,)()()(
1

11�
=

++=
N

j
ttjijt jobai ββ  

1...2,1
1

−−=
≤≤
TTt

Ni
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 Definition 4:  The variable )( jtγ  represents the probability of being in state j  at time 

t  given a model λ  and an observation sequence .O  It is estimated using forward and 

backward variables as shown below: 

               
Ni

Tt

jj

ii
i

N

j
tt

tt
t ≤≤

≤≤
=
�

=

1
1

,
)()(

)()(
)(

1

βα

βαγ   

4 MAPPING HMM PARAMETERS TO KEYSTROKE DYNAMICS 
Many real world processes that produce observable symbols can be modeled as signals, 

and these signals can be characterized using various signal modeling techniques [28]. HMM is 

one such technique, which has been extensively applied in speech recognition systems and 

various other applications [2-4, 17, 18, 25, 31].    

If the key hold times for the characters of a particular string (of a user) are considered 

as energy levels (amplitude) of a signal (signal wave), then the user can be thought of as a 

signal source whose signal can be in different energy levels. These energy levels can be 

interpreted as the states of the signal. For such a signal, the number of states will be at least the 

number of characters in the string. Furthermore, each character can be in one or more number 

of sub-states which are unknown. Moreover, the individual key hold times constitute the 

observable symbols of the signal. It follows from the above discussion that the pattern of key 

hold times can be modeled using an HMM and can be used to authenticate users based on their 

typing patterns. 

4.1 Mapping the States of the HMM to Keystroke Dynamics 

The states of our model are the characters present in the string typed by the user. 

Moreover, for each character, there are a certain number of sub-states ( ,scN  which are also 

referred to as states hereafter). We assumed an equal number of sub-states for all the characters 

for a particular model and the actual number of sub-states for the model is estimated while 

training the model. Hence, the total number of states N  in a model with T  characters is given 

by .TNN sc=   

Illustration 4: Consider the first three characters of the reference string typed by a user whose 

scN  is 2. The value of  T  is 3 (as there are three characters), so we have 
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6=N (as TNN sc= ). As shown in Figure 4, at time ,1=t  state transitions are only from the 

sub-states of ''m ( 21 morm ) to the sub-states of ''a )( 21 aora  and at time ,2=t  state 

transitions are only from the sub-states of ''a )( 21 aora  to the sub-states of ''s ).( 21 sors  

Figure 4 illustrates the state transition matrix and initial state distribution of user 4 for the 

first three characters )"(" mas  of the reference string where scN  is 2. 

               
Figure 4: State transitions in the HMM for the string "mas" with two states for each character 

where },m,m{ 21  },a,a{ 21 and }s,s{ 21 represent the sub-states for the characters ,'a','m' and 's'  
respectively 

We can see from Illustration 4 that the state transitions in the HMM of our model are 

only from the states of tht character to the states of tht )1( +  character at time instant .t  This 

implies that for ija  to have a non-zero probability value, state i  must belong to one of the sub-

states of the tht  character (i.e. )()1)1(( scsc tNiNt ≤≤+− ) and state j  must belong to one 

of the sub-states of the tht )1( +  character (i.e. ))1(()1( scsc NtjtN +≤≤+ ).  This can be 

represented as follows: 

{ ))1(()1(),()1)1((],|[
,0

1 scscscsctt NtjtNtNiNtifiSjSP
otherwiseija +≤≤+≤≤+−==+=

 

For example, in order for the state transition probability value )( ija  of Illustration 4 to 

have a non-zero value, at time ,1=t  i must be either 1 or 2 ( 1m  or 2m )  and  j must be either 
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3 or 4 ( 1a  or 2a ) i.e., 21 ≤≤ i  and ,43 ≤≤ j  which can be obtained by substituting 1=t in the 

above equation for non-zero ija value.  

We can see from Figure 4 that only the states of the first character ),( 21 mm can have 

non-zero initial state probabilities. This implies that in order for iπ  to have a non-zero 

probability value, i  must be one of the states of the first character ).1( scNi ≤≤  This can be 

represented as follows: 

{ sci NiifSqP
otherwisei

≤≤== 1],[
,0

1π
 

4.2 Mapping the Observation Symbols of the HMM to Keystroke Dynamics 

The individual key hold times constitute the observation symbols of the model. Most of 

the previous researchers have either explicitly or implicitly assumed that the keystroke features 

follow the Gaussian distribution [7, 10, 13, 30, 33]. In addition, we can see from Figures 5(a) 

and 5(b) that key hold times follow a Gaussian like distribution. Hence, we assumed that the 

probability of the key hold times follow the Gaussian distribution. Thus, the probability of 

observing a symbol (key hold time) to  in state j  with mean jµ  and standard deviation jσ  is 

given by: ).,,()( jjttj oNob σµ=  
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Figure 5(a): Frequency histogram of key 
hold times for character ‘e’ of User 2 

Figure 5(b): Frequency histogram of key 
hold times for character ‘e’ of User 21 
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4.3 Modifying the HMM Parameters 

The computations involved in the forward (or backward) procedure is in the order of 

TN 2  [32]. Thus, for example, if 3=scN  and ,32=T  we need about 300,000 computations.  

In the above example, as 96=N  ( TN sc ) the size of the state transition matrix is 

.9696×   The reason for such a high number of computations can be attributed to the size of the 

state transition matrix. But in our model, as we have already seen, at any given instant of time 

only scN  states can have non-zero probability values for state transitions. Hence, in each 

column of the state transition matrix, there are at most scN  non-zero values (this can be seen 

from Figure 4).  But, as all the values take part in the computations, even though most of them 

result in zeros, the total number of computations is quite high. Therefore, in order to reduce the 

total number of computations, the structure of the HMM parameters was modified (The 

modified parameters are represented with a bar over the parameters in order to distinguish from 

the original parameters). 

4.3.1 Modifying the Initial State and the State Transition Probabilities of the HMM 

The state transition matrix is chosen to be a three-dimensional matrix ( { }trsaA = ) where 

the first dimension corresponds to the number of characters in the observation sequence and 

the other two dimensions corresponds to the non-zero scsc NN ×  sub-matrix of each character 

in the original state transition matrix. For example, if the character at time instant t  is 

considered, then the other two dimensions correspond to the state transition probabilities from 

the states of the tht  character to the states of the tht )1( +  character.  The modified state 

transition matrix in terms of the original state transition matrix is given below: 

( )[ ] [ ]scsctrs tNsNtraa +−+= 1 ,  scNsr ≤≤ ,1 , Tt ≤≤1  

We can see from the above equation that, at any particular instant of time, the size of 

the state transition matrix considered (while estimating forward or backward variables) 

is scsc NN × .  

Only the states of the first character can have non-zero initial state probability values, 

so we changed the size of the initial state distribution )(π  from N  to scN . 
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4.3.2 Modifying the Mean and the Standard Deviation Vectors of the HMM 

Similarly, the mean and standard deviation vectors were also chosen to be two-

dimensional vectors (as opposed to one-dimensional vector) where the first dimension 

corresponds to the current character and the second dimension corresponds to the sub-states for 

that character. Thus, the probability of observing a symbol to  in the ths sub-states of the 

tht character in terms of the modified mean and standard deviation vectors is );,,( tststoN σµ this 

in terms of the original observation symbol probability distribution can be represented as: 

)(),( )1( tNtsts obotb
sc−+= ,  

Tt

Ns sc

≤≤
≤≤

1
1

 

4.4 Modifying the Forward and Backward Procedures 

The modified HMM parameters are used in the forward and backward procedures in 

order to reduce the number of computations required for estimating the forward and backward 

variables.  The forward and backward procedures in terms of the modified HMM parameters 

are given below (where the modified parameters are substituted in place of the original HMM 

parameters in the forward and backward procedures and for the derivation of the forward and 

backward procedures refer to [28]): 
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Now, the order of computations involved in the forward procedure is TN sc
2  where the 

number of multiplications required is scscsc NTNN +−+ )1)(1(  and the number of additions 

required is )1)(1( −− TNN scsc  (see Appendix for details). For the above example with 3=scN  

and ,32=T  we need about 300 computations as opposed to 300,000 computations with the 

original HMM parameters.  

5 TRAINING PHASE 
 For each registered user an HMM is trained using six reference patterns. The number of 

states and the number of training iterations of an HMM are determined using an estimation 

strategy. The detailed description about the training procedure is given in the following sub-

sections. 

5.1 Initial Estimation 

Model parameters A and π  were initialized randomly, using uniform distribution over 

the interval ).1,0(  Initial estimation of σ  for the states of each character (which is chosen to be 

same for all the states of a particular character) is calculated using six reference patterns. Initial 

estimation of µ  for the states of each character is chosen such that the difference between the 

mean values of two successive states is the standard deviation (of the six reference patterns) 

and the average of µ  for all the states is the mean of the six reference patterns.  

Illustration 5: If there are five states for each character and tt σµ ,  are the mean and 

standard deviation of  tht character of the six reference patterns, then the initial estimation for 

the mean and standard deviation of the observation symbols for the five states of tht character 

are: ),,2( ttt σσµ − ),,( ttt σσµ − ),,( tt σµ ),,( ttt σσµ + ),2( ttt σσµ +  respectively. If there 

are only four states, then the initial estimation will be ),,3( ttt σσµ − ),,( ttt σσµ −  

),,( ttt σσµ + ).,3( ttt σσµ +  

5.2 Parameter Re-estimation 

As mentioned above, the model for each registered user is trained using six reference 

patterns. The forward variable and the backward variable for each reference pattern is 

estimated using the modified forward and backward procedures (as explained in Section 4.4). 
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Using these variables and the model parameters of all the reference patterns, the parameters of 

the final model are re-estimated using the modified Rabiner’s re-estimation formulae of 

multiple observation sequences [28] as shown below:  

 

 

 

 

 

 

 

 

 

 

 

 

 

     

5.3 Estimation Strategy for the Number of States 

A strategy is proposed for estimating the number of states for each character )( scN  and 

the number of training iterations of the model. The proposed strategy is illustrated in Figure 6. 

The number of states of each character )( scN  is varied from one to six (number of training 

patterns). For each value of ,scN  the model parameters are re-estimated and validated on nine 

reference patterns (in which three patterns are unseen). In validation, three patterns with the 

least likelihood are selected and the average of the three likelihoods is returned as a result.  The 

model that gives the best result on validation is selected as the final model.  

In Figure 6, tempλ  denotes a temporary HMM which is created for each changed value 

of ),( scN  and it is compared with the best classifier yet ( λ ); if tempλ is better than λ (based 

on the validation result) then λ  is replaced with .tempλ  Here, scMAXN represents the 
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where, kP  represents the likelihood of the model on thk  reference 

pattern and all the HMM variables belonging to thk  reference pattern are 

superscripted with k . 
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maximum number of states per observation (the number of reference patterns) and 

onMAXIterati  represents the maximum number iterations of the training algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Adaptability 

The training phase results in a set of HMMs }...,{ 21 Uλλλλ = where iλ  represents an 

HMM for the thi  registered user and the sub-script U represents the number of registered 

users. As each user has a distinct HMM: (i) adding/removing user(s) can be done without 

retraining the entire system, and (ii) when the typing pattern of a user changes over time, the 

model for that user can be updated by collecting new training patterns.  

As shown in Figure 7, if there are U registered users in the system then the model of 

the thU )1( + user can be added (registered) to the system without affecting the models of the 

Input:  Training Data, Validation Data  

 32←T   

   15,6 ←← onMAXIteratiMAXN sc  

             

Step 1:    For 1←scN to scMAXN  

                 ←tempλ Initial Estimation of σµπ ,,,A   

 

Step 2:    For 1←Iteration to onMAXIterati  

   Train tempλ  with 1 iteration  

   Validate tempλ  

    If ( tempλ is the best classifier yet) 

    tempλλ ←  

End of Step 2 

End of Step 1 

Figure 6: Pseudo-code representing the Strategy for Estimating the Number 
of States and the Number of Training Iterations of the HMM 
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U registered users. Similarly, for updating the model of the thi  registered user, the previous 

model of the thi  user is replaced with the updated model. 

                          
 

 

6 USER AUTHENTICATION 
In our method, authentication of a user is made in two stages: (i) in the user 

identification stage, a user is identified by searching through all the registered users, and       

(ii) in the user verification stage, a user is verified using the claimed identity. Thus, we can see 

that for user authentication our method has a one-to-many search instead of a one-to-one 

search. From Illustration 6 we can see that the user authentication system with a one-to-many 

search can have higher overall performance as compared to the system with a one-to-one 

search.  

Illustration 6: Consider a case where a registered user )( 1RU  is trying to act as some 

other registered user )( 2RU  where )( 21 RURU ≠ . If the search is one-to-one then only the 

template of the claimed user )( 2RU  is used to verify the authenticity of the given keystroke 

pattern. But if the search is one-to-many then the template of the actual user )( 1RU is also 

considered (as in one-to-many search templates of all the users are considered), and the 

chances are that the actual user )( 1RU  will be identified (as the given keystroke pattern is 

similar to the stored template of 1RU rather than that of 2RU ), which will result in a TN 
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rather than an FAR. Hence, a one-to-many search helps in reducing the insider impostor 

attack and thereby improving the overall performance of an authentication system.  

We tested the performance of our method with the one-to-one search (user verification) 

and with the one-to-many search (user authentication) on 873 test patterns. Figure 8 illustrates 

the threshold independent average performance of both the methods using the ROC curve. We 

can see from Figure 8 that the user authentication with the one-to-many search has higher 

average performance than that of user verification with the one-to-one search. 

 

6.1 The User Identification Stage 

The procedure for user identification is illustrated in Figure 9. For the test sample xT  

the likelihood of all the registered users ( )|( ixTP λ where Ui ≤≤1 ) is calculated using the 

modified forward procedure (which is described in Section 4.4). The user with the highest 

likelihood is determined and is termed as the winner (represented with W ) for the sample xT .  

6.2 The User Verification Stage 

The procedure for user verification is illustrated in Figure 9. Test sample xT  is classified 

as a genuine attempt if the ratio between the likelihood scores of the claim, ,CU  ( )|( cuxTP λ ) and 

the winner ( )|( WxTP λ ) is greater than a threshold 1θ  and the likelihood score of the claim is 

0.2 0.4 0.6 0.8 1 
0 

0.2 

0.4 
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1 User Verification  
User Authentication 

FAR 

1-FRR 

Figure 8: Comparison of User Authentication and 
User Verification techniques 
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greater than a threshold ;2θ  otherwise, it is classified as an impostor attempt where 1θ  and 

2θ can be adjusted for allowing trade-offs between FAR and FRR values. 

       
Figure 9: Block Diagram of Computer User Authentication using the HMM 

7 EXPERIMENTAL RESULTS 
Training data was collected from a group of 43 users and each user provided a set of 

nine reference keystroke patterns for the reference string to set up an account. Our method is 

tested with 873 test patterns wherein the number of test patterns for each user varied from 0 to 

102. Hence, in order to calculate the true error rates, we averaged the error rates over the 

number of users as opposed to the number of attempts [1]. 

FAR and FRR are the error rates used to evaluate the performance of the biometric 

classifiers [1]. The FAR and 1-FRR values obtained on 873 test patterns (with 43 registered 

users and 0 unregistered users) at different thresholds are shown in Table 1. Error rates at 
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different thresholds are plotted in Figure 10. It shows that the FAR and FRR intersect at              

3.04 % which is called as the equal error rate (EER). We can see from Table 1 and Figure 10 

that when the FAR is less than 0.5 %, even with a slight change in threshold, there is a 

significant change in the FRR. Later when the FAR is greater than 0.5 %, there is no 

significant difference between the rates of increase in the FAR and decrease in the FRR (with a 

change in threshold). 

FAR 0% 0.61% 0.75% 1.23% 1.51% 2.22% 4.87% 6.84% 7.69% 

1-FRR 48.06% 89.6% 91.94% 92.5% 94.32% 97.05% 97.31% 98.96% 100% 

Table 1: The FAR and (1-FRR) values when the method is tested on 873 keystroke patterns of 43 registered 
users 

                  

 

 

7.1 The Evaluation on Three Sets 

For evaluating the effectiveness of our method, we created three data sets, by varying 

the number of registered/unregistered users, from the test data of 873 login attempts.                 

Table 2 gives the detailed description of the three data sets. In Table 2, the test set of Set # 1 is 

the test data of 873 login attempts of 43 registered users. The test sets of Set # 2 and Set # 3 are 

the sub-sets of the test set of Set # 1; wherein, (1) the test set of Set # 2 has 807 login attempts 

of 36 registered and 7 unregistered users, and (2) the test set of Set # 3 has 561 login attempts 

of 25 registered and 18 unregistered users. In Table 2, valid attempt (VA) represents a login 
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0.1 

0.2 

0.3 

0.4 

0.5 

Error  
Rate 
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3.04% 

Figure 10: The FAR and FRR plotted on the same graph to 
determine the EER when the method is tested on 873 login 

attempts of 43 registered users 
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attempt made by a registered user to match his/her stored template and invalid attempt (IA) 

represents an attempt made by any (either registered or unregistered) user acting as some other 

registered user. The training set consist of six keystroke patterns for each registered user and 

the validation set consist of nine keystroke patterns for each registered user.  

# RU – Number of Registered users    # UU – Number of Unregistered users 
#  IA – Number of Invalid Attempts   # VA – Number of Valid Attempts 

Table 2: Description of the three sets which were created from the training set of 387 keystroke patterns 
and the test set of 873 keystroke patterns of 43 users where the number of patterns per user in training is 

six and in validation is nine 
 

 

 
   (a)       (b) 
Figure 11: Evaluation of our method on the three test data sets (by varying the number of registered users 

in each set) using the ROC Curves 

As ROC graphs are used for organizing classifiers and visualizing their performance 

[12], we have plotted our results for the three sets on the same ROC graph as shown in      

Figure 11 where Figure 11(b) represents a closer view of Figure 11(a). We can see that all 

three curves are very close to each other.  
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Validation 

 Set 
(9 Patterns per user) 

 
# UU 
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1. 43 258 387 0 216 657 

2. 36 216 324 7 186 621 

3. 25 150 225 18 117 444 
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In addition to the ROC graph, Table 3 evaluates our method on the three tests sets 

where: (1) the first column represents the set number, (2) the second column represents the 

maximum accuracy obtained on each test set, (3) the third column represents the values of the 

intersection point (EER) of the FAR and the FRR for the three sets, (4) the fourth column 

represents the values of the FRR when the FAR is zero, (5) the fifth column represents the 

values of the FAR when the FRR is zero, and (6) the sixth column represents the AUC value 

[12] (which measures the threshold independent average performance of a classifier) obtained 

on each set. It can be seen from Table 3 that, (1) the maximum accuracy is almost the same for 

all the sets, (2) the EER value is slightly increased with the increase in the number of 

unregistered users, (3) the FRR at ‘Zero FAR’ is almost the same for the first two sets but it 

dropped significantly for the third set, and (4) there is not much difference between the FAR at 

‘Zero FRR’ for the first two sets whereas for the third set it is slightly increased. In spite of 

these minor differences, the AUC value for all three sets is almost the same, which indicates 

that the performance of our method is not affected much with the change in the number of 

registered or unregistered users. 

Set # Maximum 
Accuracy 

EER 
 

FRR 
(at FAR=0) 

FAR 
(at FRR=0) 

AUC 

 
1 

 
97.69 % 

 
3.04 % 

 
51.94 % 

 
7.69 % 

 
0.99603 

 
2 

 
97.45 % 

 
3.38 % 

 
54.96 % 

 
5.881 % 

 
0.99458 

 
3 

 
96.84 % 

 
4.67 % 

 
17.93 % 

 
10.72 % 

 
0.99342 

Table 3: Results of our method on the three test sets in terms of Maximum Accuracy, 
EER, Zero FAR, Zero FRR and AUC 

7.2 Comparison with Existing User Authentication Methods 

Most of the previous researchers developed user authentication systems using either 

user identification or user verification techniques. Our method combines both the techniques 

for authenticating users in order to improve the overall performance of the system. We can see 

from Illustration 6 and Figure 8 that the overall performance of the authentication system can 

be increased by combining both the identification and the verification techniques. 

Most of the previous methods for user authentication cannot dynamically add or 

remove users without retraining the entire system such as neural network and clustering 
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techniques [19-21, 23, 24]. But in our method, users can be dynamically added or deleted 

without retraining the entire system. 

Joyce and Gupta [29] proposed a statistical method which is relatively simple and 

effective but Sheng et al. [33] tried the approach on our data set and obtained an FAR of  7.72 

% when the FRR was 37.0 %, which are too large to be accepted. Sheng et al. [33] tested their 

method on the same data set (on which we tested our method) using decision trees (DT) and 

obtained the best results with wavelet transform. We have reproduced the results obtained by 

Sheng et al. [33] on 43 registered users in Table 4. 

 

 

 

Table 4: The FAR and (1-FRR) values obtained by Sheng et al. [33] using wavelet transform 

Results of our method (shown in Table 1) and that of the Sheng et al. [33]  method 

(shown in Table 4) are plotted on the same ROC graph as shown in Figure 12. We can see 

from Figure 12 that the FAR is almost the same for both methods when the FRR is greater than 

0.1; whereas, when the FRR is less than 0.1, increase in the FAR for the Sheng et al. [33] 

method is more than that of our method. The AUC value of the method proposed by Sheng et 

al. [33] is 0.98873 and the AUC value of our method is 0.99603.  

 

(a)        (b) 

 Figure 12: Comparison of our method (HMM) with the method proposed by Sheng et al. [33] (DT) 
using the ROC Curves                             

FAR 15.26 4.15 0.88 0.19 0.03 0.00 0.00 0.00 
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8 ANALYSIS 
The computations involved in the forward and backward procedures are in the order of 

,2TN  where N  is the number of states in an HMM (in our case it is TN sc ) and T  represents 

the number of observation symbols in the observation sequence. As a result, the order of 

computations in terms of scN  is in the order of .32 TN sc  But the order of computations involved 

in the modified forward procedure (or backward procedure) is in the order of .2 TN sc  Thus, the 

order of computations is reduced by .2T  

Each user has his/her specific model that assists in adding/deleting the user without 

retraining the entire system. Having a separate model for each user makes it convenient to 

update the system when the typing pattern of the users changes over time.   

9 CONCLUSION AND FUTURE WORK 
In this paper, we have proposed a method for computer user authentication using the 

HMM through keystroke dynamics by mapping the patterns of key hold times to speech 

signals. The HMM parameters are modified for reducing the order of computations (by 
2T where T  represents the length of the keystroke pattern) involved in the forward and 

backward procedures of the HMM. The advantage of our method is the adaptability to the 

changing typing pattern of user(s) and addition/deletion of user(s) without retraining the entire 

system. 

We tested our method on 873 test patterns and obtained the best FAR of 0.74 % when 

the FRR was 8.06 % and the AUC value was 0.99603. Furthermore, when we tested our 

method on three data sets by varying the number of registered/unregistered users, we observed 

that the average performance of the method did not change with a change in the number of 

registered/unregistered users. Our future work could include extending this work for 

continuous monitoring system.  



  

APPENDIX 

In this appendix, we determine the order of computations involved in the modified 

forward Procedure. 

 

 

 

 

 

Initialization step: For each value of s , there is a multiplication and zero additions. As 

s varies from 1 to scN  there are scN  multiplications and zero additions in the initialization step.   

Induction step: In Induction step, for each ts,  pair, there are 1+scN  Multiplications 

involved in which  scN  multiplications are involved in �
�
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=
trs
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1

)(α  and 1  multiplication 

with )o,t(b ts 11 ++++++++ . As scNs ≤≤≤≤≤≤≤≤1 , 11 −−−−≤≤≤≤≤≤≤≤ Tt  the total number of multiplications in Induction 

step is )1)(1( −+ TNN scsc . 

Similarly, for each ts,  pair, there are 1−scN  additions in �
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=
trs
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r
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1

)(α . Hence, the total 

number of additions in Induction step is )T)(N(N scsc 11 −−−−−−−− . 

Thus, the total number of multiplications involved in the modified forward procedure is 

scscsc NTNN +−+ )1)(1(  and the total number of additions involved is )1)(1( −− TNN scsc . 

From this, we conclude that the order of computations involved in the forward procedure 

with the modified HMM parameters TN sc
2  ………… .....................................................(1) 

The order of computations involved in the forward procedure with the original HMM 

parameters are 32 TN sc  (as TNN sc= )...............................................................................(2) 

 Hence from (1) and (2), we can see that the modified HMM parameters reduced the 

order of computations by 2T . 

 

Modified Forward Procedure: 
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