

Computer User Authentication using Hidden Markov Model

through Keystroke Dynamics

ABSTRACT: We present a novel computer user authentication technique using hidden Markov

model (HMM) through keystroke dynamics. We propose: (i) modified HMM parameters to

reduce the order of computations involved in the forward (or backward) procedure by

2T (reduction is from 32TN sc to TNsc
2 where T and scN represents the length of the

keystroke pattern and the number of states of an HMM per character respectively) and

(ii) a strategy for estimating the number of states and the number of training iterations of an

HMM. For each user, a distinct HMM is developed using modified Rabiner’s re-estimation

formulae of multiple observation sequences on six reference keystroke patterns. Authentication

of a user is made in two stages: (i) the user identification stage, wherein we determine the user

with the maximum probability score for the given keystroke pattern and (ii) the user

verification stage, wherein we determine the probability score for the given keystroke pattern

for a claimed user. Finally, a decision about the authenticity of a user is made using the results

of both the stages and threshold criteria. Data for our experiments was collected from a group

of 43 users; for training data, each user provided a set of nine reference keystroke patterns for

the string “master of science in computer science,” and for testing data, the number of

keystroke patterns for each user varied from 0 to 102 with a total of 873 keystroke patterns.

We obtained the best false accept rate of 0.74 % when the false reject rate was 8.06 % and the

area under the receiver operating characteristics curve was 0.99603.

Keywords: Keystroke dynamics, Computer Security, User identification, User verification,

User authentication, Hidden Markov Model, Receiver Operating Characteristics

Curve, Area under Curve

This work was supported in part by the Army Research Office under Grant DAAD 19-01-1-0646

 Sampath K. Vuyyuru, Vir V. Phoha, Shrijit S. Joshi Shashi Phoha, Asok Ray

 Louisiana Tech University Pennsylvania State University

 Ruston, LA 71272 University Park, PA 16802

Correspondence E-mail: phoha@latech.edu

 2

ACRONYMS

� HMM Hidden Markov Model

� TP True Positive

� TN True Negative

� FAR False Accept Rate

� FRR False Reject Rate

� EER Equal Error Rate

� ROC Receiver Operating Characteristics

� AUC Area under Curve

1 INTRODUCTION
In computer security, user authentication is the process by which a user attempts to

confirm his/her claimed identity by providing relevant information such as a password. Different

possible cases in a user authentication system are shown in Illustration 1.

Illustration 1: In user authentication system, for a given attempt by a user, any one of

the following four cases can happen where 1U is the registered user (user known to the

system) and 2U is the unregistered user (user unknown to the system):

Case 1: 1U claims as 1U and if it gets accepted then it is termed as a True Positive

Case 2: 1U claims as 1U and if it gets rejected then it is termed as a False Reject

Case 3: 2U claims as 1U and if it gets accepted then it is termed as a False Accept

Case 4: 2U claims as 1U and if it gets rejected then it is termed as a True Negative

We can see from Illustration 1 that an authentication system should have a low FAR (this

is also refereed to as a Type II error [5]) and a low FRR (this is also refereed to as a Type I error

[5]). In addition, the ROC [12] curve can be used to visualize the threshold independent

performance of an authentication system. To compare the performance of two or more

authentication systems, the AUC [12] value can be used, where the AUC value is calculated by

finding the area under the ROC curve (the higher the AUC value the better is the authentication

system).

 3

1.1 Keystroke Dynamics for User Authentication

Keystroke dynamics [11] is a behavioral pattern exhibited by an individual while typing

on a keyboard. User authentication through keystroke dynamics is appealing for many reasons

such as: (i) it is not intrusive, and (ii) it is relatively inexpensive to implement, since the only

hardware required is the computer [8]. Researchers have developed user authentication systems

through keystroke dynamics using various pattern recognition techniques like neural networks

[6, 19, 23, 24], statistical classification techniques [7, 14, 27, 29], decision trees [33], and

others [9, 14]. Most of these systems cannot add or delete user(s) without retraining the entire

system. But in this paper, we propose a method which can: (i) dynamically add or remove

users without retraining the entire system, and (ii) adapt to the changing typing patterns of the

user(s).

1.2 Motivation for using Hidden Markov Models

HMMs have proven to be useful in a variety of real world applications where

considerations for uncertainty are crucial [15]. With an ability to handle the variability in

speech signals, HMMs have proved to be an efficient model for statistically modeling speech

signals which can be seen from the extensive application of HMMs for speech recognition such

as methods proposed in [2-4, 17, 18, 25]. In the context of user authentication through

keystroke dynamics, keystroke events have a non-deterministic nature; hence, modeling

keystroke patterns with HMMs, which has the ability of handling stochastic process, can be

used to recognize the keystroke patterns of a user.

1.3 A Brief Introduction to the Proposed Method

Initially, keystroke patterns are mapped to the speech signals and the parameters of the

HMM are defined according to the mapping. But in Section 4.3, we will see that the resulting

model has a very high number of computations. Therefore, in order to reduce the number of

computations, we modified the two-dimensional state transition matrix into a three-

dimensional matrix by eliminating the state transitions with zero probabilities. Other

parameters of the HMM are also modified accordingly.

The proposed method has two phases: (1) the training phase and (2) the user

authentication phase. In the training phase, a distinct HMM is modeled for each registered user

with the modified HMM parameters, which is trained on six reference keystroke patterns using

the modified Rabiner’s re-estimation formulae of multiple observation sequences. While

 4

training, the number of states and the number of training iterations of an HMM is determined

using an estimation strategy. The user authentication phase consists of two stages: (i) the user

identification stage and (ii) the user verification stage. In the user identification stage, a one-to-

many search is done to determine the user with the maximum probability score for the given

keystroke pattern, and in the user verification stage, the probability score of the claimed user

for the given keystroke pattern is determined. Finally, the decision about the authenticity of a

user is made using the results of both the stages and threshold criteria.

Testing of our method is done on the same data set on which Sheng et al. [33] tested

their method. The AUC [12] value obtained by our method is 0.99603 and by the Sheng et al.

[33] method is 0.98873 (calculated from the error rates given in [33]). Furthermore, for

evaluating the effectiveness of our method, we created three data sets by changing the number

of registered/unregistered users. These three data sets consist of 43, 36, 25 registered users and

0, 7, 18 unregistered users respectively. We observed that the AUC value for all the sets is

almost the same, which indicates that the average performance of the method did not change

with a change in the number of registered/unregistered users.

1.4 Contributions of this Paper

Contributions of this paper are enumerated as follows:

(1) Developing a novel user authentication technique using the HMM

(2) Modifying the HMM parameters for reducing the order of computations (by 2T where T

represents the length of the keystroke pattern) involved in the forward-backward procedure

of the HMM as compared to the method proposed by Rabiner in [28]

(3) Developing a strategy for estimating the number of states and the number of training

iterations of an HMM

(4) Adding and removing of user(s) without retraining the entire system

(5) Updating the users’ templates according to the changing typing patterns of the users

1.5 Organization of this Paper

The rest of the paper is organized as follows: Section 2 deals with the data collection

for our method; Section 3 deals with a brief introduction to HMMs; Section 4 deals with the

mapping of the HMM parameters to keystroke dynamics; Section 5 deals with the procedure

for training an HMM for each user; Section 6 describes the procedure for user authentication;

 5

experimental results are discussed in Section 7; finally, analysis of our method is given in

Section 8 and conclusion and future work is discussed in Section 9.

2 DATA COLLECTION
The data set we used in our experiment is the same as that of Sheng et al. [33].

For collecting training and testing data sets, an experiment was conducted from November to

December 2002. Forty-three users (labeled as user 1 to user 43) in the experiment provided a

set of nine keystroke patterns (referred to as reference patterns) for the string, “master of

science in computer science,” to set up an account. However, the number of test patterns for

each user varied from 0 to 102 with a total of 873 patterns.

2.1 Data Preprocessing

For each keystroke pattern, we collected key press and key release times for all the

characters. From key press and key release times, the following four features can be extracted:

(1) key hold time, (2) key press latency, (3) key release latency, and (4) key interval time as

shown in Figure 1.

Figure 1: Determination of key hold times from the key press and key release times

for the characters ,'m' ,'a' and 's' of the string "mas"

Illustration 2: As shown in Figure 1, timing data captured for the string ""mas are:

key press and key release times for the characters ,''m ,''a and '.'s Using key press and key

release times: (1) key hold times are determined using the formula: ,mmm KPKRKH −=

(2) key press latencies are determined using the formula: ,mama KPKPKPL −= (3) key release

latencies are determined using the formula: ,mama KRKRKRL −= and (4) key interval times

are determined using the formula: ,KRKPKI mama −−−−==== where ,mKH ,mKR mKP represents

the key hold, key release, and key press times for the character ''m respectively, and ,aKP

aKR represents the key press and key release times for the character ''a respectively, and

Time

mKH
aKH sKH

mKP mKR aKP aKR sKP sKR

 6

,maKPL ,maKRL and maKI represents key press latency, key release latency, and key interval

time between the characters ''m and ''a respectively.

2.2 Feature Vector

Studies indicate that key hold times are more effective than key press latencies, key

release latencies and key interval times for user authentication [16, 22, 26]. Accordingly, in our

method, we used only key hold times for our feature vector. Key hold times for the space

characters were not considered because while typing the space character, the user may pause

for recollection of what has to be typed next. Thus, for each keystroke pattern, we have 32 key

hold times which constitute our feature vector.

3 BACKGROUND1

3.1 A Brief Introduction to Hidden Markov Models

An HMM is a finite state machine where the system being modeled is assumed to be a

Markov process with unknown parameters, where the unknown parameters are determined

from the observable parameters of the system [28].

Definition 1: An HMM λ is a five-tuple),,,,(πBAVS where S represents the set of

states, V represents the set of observation symbols, A represents the state transition

probability matrix, B represents the observation symbol probability distribution and π

represents the initial state matrix. },B,A{ πλ ==== is the compact notation to indicate the

complete parameter set of HMM.

Notations of various terms related to Definition 1 are: (1) }...,{ 21 NSSSS = where N

denotes the number of states and a state at time t is denoted as ,qt (2) },....,{ 21 MVVVV =

where M denotes the number of distinct observation symbols, and an observation sequence is

represented as },....,{ 21 ToooO = where sub-script T denotes the number of observations in an

observation sequence, and an observation symbol at time t is denoted as ,to (3) }{ ijaA =

where ija represents the state transition probability from state i to state ,j (4))}({ tj obB =

where)(tj ob represents the probability of observing symbol to in state ,j and (5) }{ iππ =

where iπ represents the initial state probability of state i][(1qSP ii ==π where)1 Ni ≤≤ .

1All the material given in this section is based on [28]

 7

Illustration 3: Figure 2 illustrates an HMM with 4 states labeled as S1, S2, S3 and S4;

Figure 3 illustrates the state transitions and observation symbols in an HMM where the

probability of transition from state iS to state jS is ija , and the probability of observing

symbols mV and nV from the respective states iS and jS is given by)(ti ob and

)(1+tj ob respectively.

3.2 Three Basic Problems of HMMs

For HMMs to be useful in real world applications, the following three problems must

be solved:

Problem 1: Given an observation sequence O and a model λ , how do we efficiently

compute)/(λOP

Problem 2: Given an observation sequence O and a model λ , how do we choose the

corresponding state sequence TqqqQ ,...., 21= which best explains the observations

Problem 3: How do we adjust the model parameters },,{ πλ BA= to maximize)/(λOP

Problem 1 is an evaluation problem which aims at finding the likelihood of an

observation sequence produced by a given model. The solution of this problem can be used in

pattern recognition applications. For example, if we are to choose a model among several

competing models, the solution of this problem gives the likelihood score and helps in finding

the best matching model. Problem 2 tries to uncover the hidden part of the HMMs, i.e., to find

Si Sj

State Transition

Probability = ija

)(ti ob)(1+tj ob

mt Vo= nt Vo =+1

t t+1 S1

S2
S4

S3
a31 a13

a24
a42

a34

a43
a21

a12
a14

a41 a23

a32

a33a11

a22

a44

Figure 2: Illustration of an HMM with
four states labeled as S1, S2, S3 and S4

Figure 3: Illustration of State Transitions
and Observation Symbols in an HMM

 8

the correct state sequence. But in our model, as we will see in the next section, the states do

not have any physical significance. So, we do not address this problem. Problem 3 is a

parameter optimization problem wherein, the likelihood of an observation sequence on a given

model is maximized by adjusting the model parameters),,(πBA . The solution to this problem

is used in training HMMs.

To solve the above-mentioned problems, forward and backward variables (defined

below) are used.

Definition 2: Forward variable)(jtα represents the probability of the partial

observation sequence, ',.......,' 21 tooo and state j at time t given a model .λ It is estimated

using the forward procedure as shown below:

The termination step of the forward procedure gives the solution for Problem 1.

Definition 3: Backward variable)(jtβ represents the probability of the partial

observation sequence, ',.......,' 21 Ttt ooo ++ and state j at time t given a model .λ It is estimated

using the backward procedure as shown below:

In addition to the forward and backward variables, variable γ is also used in solving

the re-estimation problem i.e., Problem 3.

Forward Procedure

1) Initialization:),()(11 obi iiπα = Ni ≤≤1

2) Induction:),()()(1
1

1 +
=

+ �
�

�
�
�

�= � tj

N

i
ijtt obaij αα

11
1

−≤≤
≤≤
Tt

Nj

3) Termination: �
=

=
N

i
T iOP

1

)()/(αλ

Backward Procedure:

1) Initialization: ,1)(=iTβ Ni ≤≤1

2) Induction: ,)()()(
1

11�
=

++=
N

j
ttjijt jobai ββ

1...2,1
1

−−=
≤≤
TTt

Ni

 9

 Definition 4: The variable)(jtγ represents the probability of being in state j at time

t given a model λ and an observation sequence .O It is estimated using forward and

backward variables as shown below:

Ni

Tt

jj

ii
i

N

j
tt

tt
t ≤≤

≤≤
=
�

=

1
1

,
)()(

)()(
)(

1

βα

βαγ

4 MAPPING HMM PARAMETERS TO KEYSTROKE DYNAMICS
Many real world processes that produce observable symbols can be modeled as signals,

and these signals can be characterized using various signal modeling techniques [28]. HMM is

one such technique, which has been extensively applied in speech recognition systems and

various other applications [2-4, 17, 18, 25, 31].

If the key hold times for the characters of a particular string (of a user) are considered

as energy levels (amplitude) of a signal (signal wave), then the user can be thought of as a

signal source whose signal can be in different energy levels. These energy levels can be

interpreted as the states of the signal. For such a signal, the number of states will be at least the

number of characters in the string. Furthermore, each character can be in one or more number

of sub-states which are unknown. Moreover, the individual key hold times constitute the

observable symbols of the signal. It follows from the above discussion that the pattern of key

hold times can be modeled using an HMM and can be used to authenticate users based on their

typing patterns.

4.1 Mapping the States of the HMM to Keystroke Dynamics

The states of our model are the characters present in the string typed by the user.

Moreover, for each character, there are a certain number of sub-states (,scN which are also

referred to as states hereafter). We assumed an equal number of sub-states for all the characters

for a particular model and the actual number of sub-states for the model is estimated while

training the model. Hence, the total number of states N in a model with T characters is given

by .TNN sc=

Illustration 4: Consider the first three characters of the reference string typed by a user whose

scN is 2. The value of T is 3 (as there are three characters), so we have

 10

6=N (as TNN sc=). As shown in Figure 4, at time ,1=t state transitions are only from the

sub-states of ''m (21 morm) to the sub-states of ''a)(21 aora and at time ,2=t state

transitions are only from the sub-states of ''a)(21 aora to the sub-states of ''s).(21 sors

Figure 4 illustrates the state transition matrix and initial state distribution of user 4 for the

first three characters)"(" mas of the reference string where scN is 2.

Figure 4: State transitions in the HMM for the string "mas" with two states for each character

where },m,m{ 21 },a,a{ 21 and }s,s{ 21 represent the sub-states for the characters ,'a','m' and 's'
respectively

We can see from Illustration 4 that the state transitions in the HMM of our model are

only from the states of tht character to the states of tht)1(+ character at time instant .t This

implies that for ija to have a non-zero probability value, state i must belong to one of the sub-

states of the tht character (i.e.)()1)1((scsc tNiNt ≤≤+−) and state j must belong to one

of the sub-states of the tht)1(+ character (i.e.))1(()1(scsc NtjtN +≤≤+). This can be

represented as follows:

{))1(()1(),()1)1((],|[
,0

1 scscscsctt NtjtNtNiNtifiSjSP
otherwiseija +≤≤+≤≤+−==+=

For example, in order for the state transition probability value)(ija of Illustration 4 to

have a non-zero value, at time ,1=t i must be either 1 or 2 (1m or 2m) and j must be either

t =1

m2

m1

a1

a2

s1

s2

t =2 t =3

m2

m1

a1

a2

s1

s2

m2

m1

a1

a2

s1

s2

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�

�

�

=

0
0
0
0
42.0
58.0

000000
000000
42.058.00000
30.070.00000
0020.080.000
0034.066.000

2

1

2

1

2

1

2

1

2

1

2

1

212121

s

s

a

a

m

m

s

s

a

a

m

m

ssaamm

A

π

 11

3 or 4 (1a or 2a) i.e., 21 ≤≤ i and ,43 ≤≤ j which can be obtained by substituting 1=t in the

above equation for non-zero ija value.

We can see from Figure 4 that only the states of the first character),(21 mm can have

non-zero initial state probabilities. This implies that in order for iπ to have a non-zero

probability value, i must be one of the states of the first character).1(scNi ≤≤ This can be

represented as follows:

{ sci NiifSqP
otherwisei

≤≤== 1],[
,0

1π

4.2 Mapping the Observation Symbols of the HMM to Keystroke Dynamics

The individual key hold times constitute the observation symbols of the model. Most of

the previous researchers have either explicitly or implicitly assumed that the keystroke features

follow the Gaussian distribution [7, 10, 13, 30, 33]. In addition, we can see from Figures 5(a)

and 5(b) that key hold times follow a Gaussian like distribution. Hence, we assumed that the

probability of the key hold times follow the Gaussian distribution. Thus, the probability of

observing a symbol (key hold time) to in state j with mean jµ and standard deviation jσ is

given by:).,,()(jjttj oNob σµ=

90 110 130 150
0

50

100

150

Key hold times

F
r
e
q
u
e
n
c
y

60 80 100 120 140 160 180 200
0

20

40

60

80

100

Key hold times

F
r
e
q
u
e
n
c
y

Figure 5(a): Frequency histogram of key
hold times for character ‘e’ of User 2

Figure 5(b): Frequency histogram of key
hold times for character ‘e’ of User 21

 12

4.3 Modifying the HMM Parameters

The computations involved in the forward (or backward) procedure is in the order of

TN 2 [32]. Thus, for example, if 3=scN and ,32=T we need about 300,000 computations.

In the above example, as 96=N (TN sc) the size of the state transition matrix is

.9696× The reason for such a high number of computations can be attributed to the size of the

state transition matrix. But in our model, as we have already seen, at any given instant of time

only scN states can have non-zero probability values for state transitions. Hence, in each

column of the state transition matrix, there are at most scN non-zero values (this can be seen

from Figure 4). But, as all the values take part in the computations, even though most of them

result in zeros, the total number of computations is quite high. Therefore, in order to reduce the

total number of computations, the structure of the HMM parameters was modified (The

modified parameters are represented with a bar over the parameters in order to distinguish from

the original parameters).

4.3.1 Modifying the Initial State and the State Transition Probabilities of the HMM

The state transition matrix is chosen to be a three-dimensional matrix ({ }trsaA =) where

the first dimension corresponds to the number of characters in the observation sequence and

the other two dimensions corresponds to the non-zero scsc NN × sub-matrix of each character

in the original state transition matrix. For example, if the character at time instant t is

considered, then the other two dimensions correspond to the state transition probabilities from

the states of the tht character to the states of the tht)1(+ character. The modified state

transition matrix in terms of the original state transition matrix is given below:

()[] []scsctrs tNsNtraa +−+= 1 , scNsr ≤≤ ,1 , Tt ≤≤1

We can see from the above equation that, at any particular instant of time, the size of

the state transition matrix considered (while estimating forward or backward variables)

is scsc NN × .

Only the states of the first character can have non-zero initial state probability values,

so we changed the size of the initial state distribution)(π from N to scN .

 13

4.3.2 Modifying the Mean and the Standard Deviation Vectors of the HMM

Similarly, the mean and standard deviation vectors were also chosen to be two-

dimensional vectors (as opposed to one-dimensional vector) where the first dimension

corresponds to the current character and the second dimension corresponds to the sub-states for

that character. Thus, the probability of observing a symbol to in the ths sub-states of the

tht character in terms of the modified mean and standard deviation vectors is);,,(tststoN σµ this

in terms of the original observation symbol probability distribution can be represented as:

)(),()1(tNtsts obotb
sc−+= ,

Tt

Ns sc

≤≤
≤≤

1
1

4.4 Modifying the Forward and Backward Procedures

The modified HMM parameters are used in the forward and backward procedures in

order to reduce the number of computations required for estimating the forward and backward

variables. The forward and backward procedures in terms of the modified HMM parameters

are given below (where the modified parameters are substituted in place of the original HMM

parameters in the forward and backward procedures and for the derivation of the forward and

backward procedures refer to [28]):

Modified Forward Procedure

1) Initialization:),1()(11 obr rrπα = , scNr ≤≤1

2) Induction:),1()()(1
1

1 +
=

+ +�
�

�
�
�

�
= � tstrs

N

r

tt otbars
sc

αα ,
11

1
−≤≤

≤≤
Tt

Ns sc

 3) Termination: �
=

=
scN

r
T rOP

1

)()/(αλ

Modified Backward Procedure

1) Initialization: 1)(=sTβ , scNs ≤≤1

2) Induction:),(),1()(11
1

sotbar tts

N

s

trst

sc

++
=

+=� ββ
11

1
−≤≤

≤≤
Tt

Nr sc

 14

Now, the order of computations involved in the forward procedure is TN sc
2 where the

number of multiplications required is scscsc NTNN +−+)1)(1(and the number of additions

required is)1)(1(−− TNN scsc (see Appendix for details). For the above example with 3=scN

and ,32=T we need about 300 computations as opposed to 300,000 computations with the

original HMM parameters.

5 TRAINING PHASE
 For each registered user an HMM is trained using six reference patterns. The number of

states and the number of training iterations of an HMM are determined using an estimation

strategy. The detailed description about the training procedure is given in the following sub-

sections.

5.1 Initial Estimation

Model parameters A and π were initialized randomly, using uniform distribution over

the interval).1,0(Initial estimation of σ for the states of each character (which is chosen to be

same for all the states of a particular character) is calculated using six reference patterns. Initial

estimation of µ for the states of each character is chosen such that the difference between the

mean values of two successive states is the standard deviation (of the six reference patterns)

and the average of µ for all the states is the mean of the six reference patterns.

Illustration 5: If there are five states for each character and tt σµ , are the mean and

standard deviation of tht character of the six reference patterns, then the initial estimation for

the mean and standard deviation of the observation symbols for the five states of tht character

are:),,2(ttt σσµ −),,(ttt σσµ −),,(tt σµ),,(ttt σσµ +),2(ttt σσµ + respectively. If there

are only four states, then the initial estimation will be),,3(ttt σσµ −),,(ttt σσµ −

),,(ttt σσµ +).,3(ttt σσµ +

5.2 Parameter Re-estimation

As mentioned above, the model for each registered user is trained using six reference

patterns. The forward variable and the backward variable for each reference pattern is

estimated using the modified forward and backward procedures (as explained in Section 4.4).

 15

Using these variables and the model parameters of all the reference patterns, the parameters of

the final model are re-estimated using the modified Rabiner’s re-estimation formulae of

multiple observation sequences [28] as shown below:

5.3 Estimation Strategy for the Number of States

A strategy is proposed for estimating the number of states for each character)(scN and

the number of training iterations of the model. The proposed strategy is illustrated in Figure 6.

The number of states of each character)(scN is varied from one to six (number of training

patterns). For each value of ,scN the model parameters are re-estimated and validated on nine

reference patterns (in which three patterns are unseen). In validation, three patterns with the

least likelihood are selected and the average of the three likelihoods is returned as a result. The

model that gives the best result on validation is selected as the final model.

In Figure 6, tempλ denotes a temporary HMM which is created for each changed value

of),(scN and it is compared with the best classifier yet (λ); if tempλ is better than λ (based

on the validation result) then λ is replaced with .tempλ Here, scMAXN represents the

Modified Rabiner’s Re-estimation Formulae for Multiple Observation

Sequences (in terms of the Modified HMM Parameters)

�

�

=

==
K

k k

K

k

k

k
r

P

r
P

1

1
1

1

)(
1 γ

π
() () ()()

() ()()�

�

=

=
+++

=
K

k

k

t
k

t
k

K

k

k

t
k
tstrs

k
t

k
trs

rr
P

sotbar
P

a

1

1
11

1

,1
1

βα

βα

�

�

=

==
K

k

k
t

K

k

k
t

k
t

ts

s

os

1

1

)(

)(

)(

γ

γ
µ

()

�

�

=

=

−
=

K

k

k
t

K

k
ts

k
t

k
t

ts

s

os

1

2

1

)(

)(

)(

γ

µγ
σ

where, kP represents the likelihood of the model on thk reference

pattern and all the HMM variables belonging to thk reference pattern are

superscripted with k .

 16

maximum number of states per observation (the number of reference patterns) and

onMAXIterati represents the maximum number iterations of the training algorithm.

5.4 Adaptability

The training phase results in a set of HMMs }...,{ 21 Uλλλλ = where iλ represents an

HMM for the thi registered user and the sub-script U represents the number of registered

users. As each user has a distinct HMM: (i) adding/removing user(s) can be done without

retraining the entire system, and (ii) when the typing pattern of a user changes over time, the

model for that user can be updated by collecting new training patterns.

As shown in Figure 7, if there are U registered users in the system then the model of

the thU)1(+ user can be added (registered) to the system without affecting the models of the

Input: Training Data, Validation Data

 32←T

 15,6 ←← onMAXIteratiMAXN sc

Step 1: For 1←scN to scMAXN

 ←tempλ Initial Estimation of σµπ ,,,A

Step 2: For 1←Iteration to onMAXIterati

 Train tempλ with 1 iteration

 Validate tempλ

 If (tempλ is the best classifier yet)

 tempλλ ←

End of Step 2

End of Step 1

Figure 6: Pseudo-code representing the Strategy for Estimating the Number
of States and the Number of Training Iterations of the HMM

 17

U registered users. Similarly, for updating the model of the thi registered user, the previous

model of the thi user is replaced with the updated model.

6 USER AUTHENTICATION
In our method, authentication of a user is made in two stages: (i) in the user

identification stage, a user is identified by searching through all the registered users, and

(ii) in the user verification stage, a user is verified using the claimed identity. Thus, we can see

that for user authentication our method has a one-to-many search instead of a one-to-one

search. From Illustration 6 we can see that the user authentication system with a one-to-many

search can have higher overall performance as compared to the system with a one-to-one

search.

Illustration 6: Consider a case where a registered user)(1RU is trying to act as some

other registered user)(2RU where)(21 RURU ≠ . If the search is one-to-one then only the

template of the claimed user)(2RU is used to verify the authenticity of the given keystroke

pattern. But if the search is one-to-many then the template of the actual user)(1RU is also

considered (as in one-to-many search templates of all the users are considered), and the

chances are that the actual user)(1RU will be identified (as the given keystroke pattern is

similar to the stored template of 1RU rather than that of 2RU), which will result in a TN

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

U

i

λ

λ

λ
λ

.

.

.

.
2

1

Updating an
existing HMM

of User i

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

U

i

λ

λ

λ
λ

.

.

.

.
2

1

Updating the model of an existing User

U Registered
users

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

U

i

λ

λ

λ
λ

.

.

.

.
2

1

Adding a New
User)1(+U to

the System

Adding a New User

�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�

�

�

+1

2

1

.

.

.

U

U

i

λ
λ

λ

λ
λ

U Registered
users

Figure 7: Illustration of adding a new user and updating the model of an existing user in our user
authentication system

U Registered
users

U+1 Registered
users

 18

rather than an FAR. Hence, a one-to-many search helps in reducing the insider impostor

attack and thereby improving the overall performance of an authentication system.

We tested the performance of our method with the one-to-one search (user verification)

and with the one-to-many search (user authentication) on 873 test patterns. Figure 8 illustrates

the threshold independent average performance of both the methods using the ROC curve. We

can see from Figure 8 that the user authentication with the one-to-many search has higher

average performance than that of user verification with the one-to-one search.

6.1 The User Identification Stage

The procedure for user identification is illustrated in Figure 9. For the test sample xT

the likelihood of all the registered users ()|(ixTP λ where Ui ≤≤1) is calculated using the

modified forward procedure (which is described in Section 4.4). The user with the highest

likelihood is determined and is termed as the winner (represented with W) for the sample xT .

6.2 The User Verification Stage

The procedure for user verification is illustrated in Figure 9. Test sample xT is classified

as a genuine attempt if the ratio between the likelihood scores of the claim, ,CU ()|(cuxTP λ) and

the winner ()|(WxTP λ) is greater than a threshold 1θ and the likelihood score of the claim is

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 User Verification
User Authentication

FAR

1-FRR

Figure 8: Comparison of User Authentication and
User Verification techniques

 19

greater than a threshold ;2θ otherwise, it is classified as an impostor attempt where 1θ and

2θ can be adjusted for allowing trade-offs between FAR and FRR values.

Figure 9: Block Diagram of Computer User Authentication using the HMM

7 EXPERIMENTAL RESULTS
Training data was collected from a group of 43 users and each user provided a set of

nine reference keystroke patterns for the reference string to set up an account. Our method is

tested with 873 test patterns wherein the number of test patterns for each user varied from 0 to

102. Hence, in order to calculate the true error rates, we averaged the error rates over the

number of users as opposed to the number of attempts [1].

FAR and FRR are the error rates used to evaluate the performance of the biometric

classifiers [1]. The FAR and 1-FRR values obtained on 873 test patterns (with 43 registered

users and 0 unregistered users) at different thresholds are shown in Table 1. Error rates at

1λ

)1|(λxTP

2λ Test sample

xT

W = Select the model
with the Maximum
likelihood

.

.

.

Claimed user is
positively identified

Impostor Attempt

No

 If

1)|(

)|(
θ

λ

λ
≥

Wx
TP

cux
TP

 and

 2)|(θλ ≥cuxTP

Yes

 User Identification Stage User Verification Stage User
claimed as

‘CU’

)2|(λxTP

)|(UxTP λ

Uλ

 20

different thresholds are plotted in Figure 10. It shows that the FAR and FRR intersect at

3.04 % which is called as the equal error rate (EER). We can see from Table 1 and Figure 10

that when the FAR is less than 0.5 %, even with a slight change in threshold, there is a

significant change in the FRR. Later when the FAR is greater than 0.5 %, there is no

significant difference between the rates of increase in the FAR and decrease in the FRR (with a

change in threshold).

FAR 0% 0.61% 0.75% 1.23% 1.51% 2.22% 4.87% 6.84% 7.69%

1-FRR 48.06% 89.6% 91.94% 92.5% 94.32% 97.05% 97.31% 98.96% 100%

Table 1: The FAR and (1-FRR) values when the method is tested on 873 keystroke patterns of 43 registered
users

7.1 The Evaluation on Three Sets

For evaluating the effectiveness of our method, we created three data sets, by varying

the number of registered/unregistered users, from the test data of 873 login attempts.

Table 2 gives the detailed description of the three data sets. In Table 2, the test set of Set # 1 is

the test data of 873 login attempts of 43 registered users. The test sets of Set # 2 and Set # 3 are

the sub-sets of the test set of Set # 1; wherein, (1) the test set of Set # 2 has 807 login attempts

of 36 registered and 7 unregistered users, and (2) the test set of Set # 3 has 561 login attempts

of 25 registered and 18 unregistered users. In Table 2, valid attempt (VA) represents a login

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

Error
Rate

 FAR
 FRR

Threshold

3.04%

Figure 10: The FAR and FRR plotted on the same graph to
determine the EER when the method is tested on 873 login

attempts of 43 registered users

 21

attempt made by a registered user to match his/her stored template and invalid attempt (IA)

represents an attempt made by any (either registered or unregistered) user acting as some other

registered user. The training set consist of six keystroke patterns for each registered user and

the validation set consist of nine keystroke patterns for each registered user.

RU – Number of Registered users # UU – Number of Unregistered users
IA – Number of Invalid Attempts # VA – Number of Valid Attempts

Table 2: Description of the three sets which were created from the training set of 387 keystroke patterns
and the test set of 873 keystroke patterns of 43 users where the number of patterns per user in training is

six and in validation is nine

 (a) (b)
Figure 11: Evaluation of our method on the three test data sets (by varying the number of registered users

in each set) using the ROC Curves

As ROC graphs are used for organizing classifiers and visualizing their performance

[12], we have plotted our results for the three sets on the same ROC graph as shown in

Figure 11 where Figure 11(b) represents a closer view of Figure 11(a). We can see that all

three curves are very close to each other.

Testing Set

Set

RU

Training Set

 (6 Patterns per user)

Validation

 Set
(9 Patterns per user)

UU

VA

IA

1. 43 258 387 0 216 657

2. 36 216 324 7 186 621

3. 25 150 225 18 117 444

43 Users

36 Users

25 Users

0 0.05 0.1 0.15
 0.85

 0.90

 0.95

1

FAR

1-FRR

0

43 Users

36 Users

25 Users

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FAR

1-FRR

 22

In addition to the ROC graph, Table 3 evaluates our method on the three tests sets

where: (1) the first column represents the set number, (2) the second column represents the

maximum accuracy obtained on each test set, (3) the third column represents the values of the

intersection point (EER) of the FAR and the FRR for the three sets, (4) the fourth column

represents the values of the FRR when the FAR is zero, (5) the fifth column represents the

values of the FAR when the FRR is zero, and (6) the sixth column represents the AUC value

[12] (which measures the threshold independent average performance of a classifier) obtained

on each set. It can be seen from Table 3 that, (1) the maximum accuracy is almost the same for

all the sets, (2) the EER value is slightly increased with the increase in the number of

unregistered users, (3) the FRR at ‘Zero FAR’ is almost the same for the first two sets but it

dropped significantly for the third set, and (4) there is not much difference between the FAR at

‘Zero FRR’ for the first two sets whereas for the third set it is slightly increased. In spite of

these minor differences, the AUC value for all three sets is almost the same, which indicates

that the performance of our method is not affected much with the change in the number of

registered or unregistered users.

Set # Maximum
Accuracy

EER

FRR
(at FAR=0)

FAR
(at FRR=0)

AUC

1

97.69 %

3.04 %

51.94 %

7.69 %

0.99603

2

97.45 %

3.38 %

54.96 %

5.881 %

0.99458

3

96.84 %

4.67 %

17.93 %

10.72 %

0.99342

Table 3: Results of our method on the three test sets in terms of Maximum Accuracy,
EER, Zero FAR, Zero FRR and AUC

7.2 Comparison with Existing User Authentication Methods

Most of the previous researchers developed user authentication systems using either

user identification or user verification techniques. Our method combines both the techniques

for authenticating users in order to improve the overall performance of the system. We can see

from Illustration 6 and Figure 8 that the overall performance of the authentication system can

be increased by combining both the identification and the verification techniques.

Most of the previous methods for user authentication cannot dynamically add or

remove users without retraining the entire system such as neural network and clustering

 23

techniques [19-21, 23, 24]. But in our method, users can be dynamically added or deleted

without retraining the entire system.

Joyce and Gupta [29] proposed a statistical method which is relatively simple and

effective but Sheng et al. [33] tried the approach on our data set and obtained an FAR of 7.72

% when the FRR was 37.0 %, which are too large to be accepted. Sheng et al. [33] tested their

method on the same data set (on which we tested our method) using decision trees (DT) and

obtained the best results with wavelet transform. We have reproduced the results obtained by

Sheng et al. [33] on 43 registered users in Table 4.

Table 4: The FAR and (1-FRR) values obtained by Sheng et al. [33] using wavelet transform

Results of our method (shown in Table 1) and that of the Sheng et al. [33] method

(shown in Table 4) are plotted on the same ROC graph as shown in Figure 12. We can see

from Figure 12 that the FAR is almost the same for both methods when the FRR is greater than

0.1; whereas, when the FRR is less than 0.1, increase in the FAR for the Sheng et al. [33]

method is more than that of our method. The AUC value of the method proposed by Sheng et

al. [33] is 0.98873 and the AUC value of our method is 0.99603.

(a) (b)

 Figure 12: Comparison of our method (HMM) with the method proposed by Sheng et al. [33] (DT)
using the ROC Curves

FAR 15.26 4.15 0.88 0.19 0.03 0.00 0.00 0.00

1-FRR 98.85 96.56 90.38 78.25 60.71 40.55 23.60 8.82

0 0.05 0.1
0.85

0.9

0.95

1

1-FRR

FAR

HMM

DT

0 0.2 0.4 0.6 0.8 1 0

0.2

0.4

0.6

0.8

1

1-FRR

FAR

HMM

DT

 24

8 ANALYSIS
The computations involved in the forward and backward procedures are in the order of

,2TN where N is the number of states in an HMM (in our case it is TN sc) and T represents

the number of observation symbols in the observation sequence. As a result, the order of

computations in terms of scN is in the order of .32 TN sc But the order of computations involved

in the modified forward procedure (or backward procedure) is in the order of .2 TN sc Thus, the

order of computations is reduced by .2T

Each user has his/her specific model that assists in adding/deleting the user without

retraining the entire system. Having a separate model for each user makes it convenient to

update the system when the typing pattern of the users changes over time.

9 CONCLUSION AND FUTURE WORK
In this paper, we have proposed a method for computer user authentication using the

HMM through keystroke dynamics by mapping the patterns of key hold times to speech

signals. The HMM parameters are modified for reducing the order of computations (by
2T where T represents the length of the keystroke pattern) involved in the forward and

backward procedures of the HMM. The advantage of our method is the adaptability to the

changing typing pattern of user(s) and addition/deletion of user(s) without retraining the entire

system.

We tested our method on 873 test patterns and obtained the best FAR of 0.74 % when

the FRR was 8.06 % and the AUC value was 0.99603. Furthermore, when we tested our

method on three data sets by varying the number of registered/unregistered users, we observed

that the average performance of the method did not change with a change in the number of

registered/unregistered users. Our future work could include extending this work for

continuous monitoring system.

APPENDIX

In this appendix, we determine the order of computations involved in the modified

forward Procedure.

Initialization step: For each value of s , there is a multiplication and zero additions. As

s varies from 1 to scN there are scN multiplications and zero additions in the initialization step.

Induction step: In Induction step, for each ts, pair, there are 1+scN Multiplications

involved in which scN multiplications are involved in �
�

�
�
�

�
�

=
trs

N

r
t ar

sc

1

)(α and 1 multiplication

with)o,t(b ts 11 ++++++++ . As scNs ≤≤≤≤≤≤≤≤1 , 11 −−−−≤≤≤≤≤≤≤≤ Tt the total number of multiplications in Induction

step is)1)(1(−+ TNN scsc .

Similarly, for each ts, pair, there are 1−scN additions in �
�

�
�
�

�
�

=
trs

N

r
t ar

sc

1

)(α . Hence, the total

number of additions in Induction step is)T)(N(N scsc 11 −−−−−−−− .

Thus, the total number of multiplications involved in the modified forward procedure is

scscsc NTNN +−+)1)(1(and the total number of additions involved is)1)(1(−− TNN scsc .

From this, we conclude that the order of computations involved in the forward procedure

with the modified HMM parameters TN sc
2 ………… ...(1)

The order of computations involved in the forward procedure with the original HMM

parameters are 32 TN sc (as TNN sc=)...(2)

 Hence from (1) and (2), we can see that the modified HMM parameters reduced the

order of computations by 2T .

Modified Forward Procedure:

Initialization:),1()(11 obs ssπα = , where scNs ≤≤1

Induction:),1()()(1
1

1 +
=

+ +�
�

�
�
�

�
= � tstrs

N

r

tt otbars
sc

αα , where scNs ≤≤1 , 11 −≤≤ Tt

REFERENCES
1. A. J. Mansfield and Wayman, J.L. Best Practices in Testing and Reporting Performance

of Biometric Devices, Center for Mathematics and Scientific Computing, National

Physics Laboratory, Queens Road, Teddington, Middlesex, TW 11 0LW, August 2002.

2. Ajit V. Rao and Rose, K. Deterministically Annealed Design of Hidden Markov Model

Speech Recognizers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9

(2).

3. B. H. Juang and Rabiner, L.R. Hidden Markov Models for Speech Recognition.

American Statistical Association and the American Society for Quality Control, 33 (3).

251-272.

4. Bakis, R. Continuous Speech Recognition via centisecond acoustic states. Meeting of the

Acoustic Society of America.

5. Bartlow, N. Username and Password Verification through Keystroke Dynamics

Computer Science, West Virginia University, Morgantown, West Virginia, 2005.

6. D. Bleha and Obaidat, M. Dimensionality reduction and feature extraction applications in

identifying computer users. IEEE Transactions on Systems, Man, and Cybernetics - Part

B: Cybernetics, 21. 452-456.

7. D. Umphress and Williams, G. Identity verification through keyboard characteristics. Int.

J. Man-Machine Studies, 23 (3). 263-273.

8. Dainele Gunetti and C. Piccardi Keystroke Analysis of Free Text. ACM Transactions on

Information and System Security, 8 (3). 312-347.

9. F. Monrose, M. K. Reiter and Wetzel, S., Password hardening based on keystroke

dynamics. in 6th ACM Conference on Computer and Communication Security, (1999),

ACM Press, 73-82.

10. F. Monrose and Rubin, A., Authentication via keystroke dynamics. in Proceedings of

ACM Workshop, (1997), ACM, 48-56.

11. Fabian Monrose and Rubin, A.D. Keystroke dynamics as a biometric for authentication.

Future Generation Computer System, 16. 351-359.

12. Fawcett, T. ROC Graphs: Notes and Practical Considerations for Researchers. Kluwer

Academic Publishers.

 27

13. J. Leggett, G. Williams, M. Usnick and Longnecker, M. Dynamic identity verification via

keystroke characteristics. International Journal of Man-Machine Studies (35). 859-870.

14. J. Leggett and Williams, G. Verifying identity via keystroke characteristics. International

Journal of Man-Machine Studies, 28 (1). 67-76.

15. Jafar Adibi, Wei-Min Shen and Noorbakhsh, E. Self-Similarity for Data Mining and

Predictive Modeling: A Case Study for Network Data. PAKDD.

16. John A. Robinson, Vicky M. Liang, J. A. Michael Chambers and Mackenzie, C.L.

Computer user verification using login string keystroke dynamics. IEEE Transactions on

Systems, Man and Cybernetics - Part A: Systems and Humans, 28 (2). 236-241.

17. Kenji Kita, Takeshi Kawabata and Saito, H. HMM Continuous Speech Recognition using

Predictive LR Parsing. Acoustics, Speech, and Signal Processing ICASSP-89., 2. 703-

706.

18. Lawrence Rabiner and Juang, B.H. Fundamentals of Speech Recognition. Prentice Hall,

1993.

19. Lin, D.T., Computer Access Authentication with neural network based keystroke identity

verification. in International Conference on Neural Networks, (Houston, Texas, 1997),

174-178.

20. M. K. Reiter, F. Monrose and Wetzel, S., Password hardening based on keystroke

dynamics. in 6th ACM Conference on Computer and Communications Security,

(Singapore, 1999), ACM, 73-82.

21. M. S. Obaidat and Macchairolo, D.T. A Multilayer Neural Network System for Computer

Access Security. IEEE Transactions on Systems, Man and Cybernetics, 24 (5).

22. M. S. Obaidat and Sadoun, B. Verification of Computer Users Using Keystroke

Dynamics. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics,

27 (2). 261-269.

23. Marcus Brown and Rogers, S.J. User Identification via Keystroke Characteristics of

typed names using Neural Networks. International Journal of Man-Machine Studies, 39.

999-1014.

24. Obaidat, M.S., A verification methodology for computer systems users. in Proceedings of

the 1995 ACM Symposium on Applied Computing, (Nashville, Tennessee, 1995), ACM

Press, 258-262.

 28

25. Paul, D.B. Speech recognition using hidden Markov models. Lincoln Lab. Journal, 3 (1).

41-62.

26. Phoha, V.V., Kumar, P. and Vuyyuru, S.K. Keystroke Typing Rhythm as an Input Vector

for Authentication. Manuscript under revision for submission to IEEE Transactions on

Systems,Man and Cybernetics, Part B.

27. R. Gaines, W. Lisowski, S. Press and Shapiro, N. Authentication by Keystroke Timing:

Some Preliminary Results Tech. report R-256-NSF, Tech report R-256-NSF, RAND,

Santa Monica, CA, 1980.

28. Rabiner, L. A Tutorial on Hidden Markov Models and Selected Applications in Speech

Recognition. Proceedings of the IEEE.

29. Rick Joyce and Gupta, G. Identity Authentication Based on Keystroke Latencies.

Communications of the ACM, 33 (2). 168-176.

30. S. Bleha, C. Slivinsky and Hussein, B. Computer-access security systems using keystroke

dynamics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (12).

1217-1222.

31. Shrijit S. Joshi and Phoha, V.V., Investigating Hidden Markov Models capabilities in

Anomaly Detection. in 43rd ACM SE Conference, (Kennesaw State University,

Kennesaw, Georgia, USA, March 2005), ACM.

32. Vinar, T. Enhancements to Hidden Markov Models for Gene Finding and Other

Biological Applications Computer Science, University of Waterloo, Waterloo, Ontario,

Canada, 2005, 162.

33. Yong Sheng, Vir V. Phoha and Rovnyak, S.M. A Parallel Decision Tree-Based Method

for User Authentication Based on Keystroke Patterns. IEEE Transactions on Systems,

Man, and Cybernetics - Part B: Cybernetics, 35 (4). 826-833.

