Review of Recent Systems for Automatic Assessment of
Programming Assignments

Petri Ihantola
Department of Computer
Science and Engineering

Aalto University

petri@cs.hut.fi

Tuukka Ahoniemi
Digia Plc
Finland L
tuukka.ahoniemi@digia.com

Ville Karavirta
Department of Computer
Science and Engineering

Aalto University

vkaravir@cs.hut.fi

Otto Seppala
Department of Computer
Science and Engineering

Aalto University

oseppala@cs.hut.fi

ABSTRACT

This paper presents a systematic literature review of the re-
cent (2006-2010) development of automatic assessment tools
for programming exercises. We discuss the major features
that the tools support and the different approaches they are
using both from the pedagogical and the technical point of
view. Examples of these features are ways for the teacher
to define tests, resubmission policies, security issues, and so
forth. We have also identified a list of novel features, like
assessing web software, that are likely to get more research
attention in the future. As a conclusion, we state that too
many new systems are developed, but also acknowledge the
current reasons for the phenomenon. As one solution we
encourage opening up the existing systems and joining ef-
forts on developing those further. Selected systems from our
survey are briefly described in Appendix [Al

1. INTRODUCTION

Assessment provides the teacher with a feedback chan-
nel that shows how learning goals are being met. It also
ensures for an outside observer that students achieve those
learning goals. Assessment provides both means to guide
student learning and feedback for both the learner and the
teacher about the learning process — from the level of a whole
course down to a single student on some specific topic being
assessed.

Students often direct their efforts based on what is as-
sessed and how it affects the final course grade [6, Chap-
ter 9]. Continuous assessment during a programming course
ensures that students get enough practice as well as get feed-
back on the quality of their solutions. Providing quality
assessment manually for even a small class means that feed-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Koli Calling ’10, October 28-31, 2010, Koli, Finland

Copyright 2010 ACM 978-1-4503-0520-4/10/10 ...$10.00.

back can not be as instant as in one-to-one tutoring. When
the class size grows, the amount of assessed work has to
be cut down or rationalized in some other way. Automatic
assessment (AA), however, allows instant feedback without
the need to reduce exercises.

Why do so many automatic assessment systems exist, and
why are new ones created every year? Many systems share
common features and it would seem that systems already
exist that fulfill most assessment needs.

One clear reason for the variety of tools has to do with
their availability and lifespan. Tools are often created as
a part of a thesis or for a particular course. They are fin-
ished enough for studying a research question or to support
the needs of one particular course, but are not suitable for
distribution. It is rather common that the very first ver-
sion of a tool was something that the teacher did quickly
for his/her very own purpose. These tools might get pub-
licized if some research was the original motivator, but as
they never emerge as supported pieces of software, similar
systems get implemented again and again. Correspondingly,
there are far less systems that are widely adopted than there
are papers about new tools.

We argue that presenting a big picture about the recently
developed and currently available AA systems would help
both teachers find the tools they might be searching and
developers avoid reinventing the wheel. Literature survey is
one way to achieve this. In this survey, our goal is to serve
teachers who need to give grades to large classes. This is
where the automatic grading of programming assignments
can free the teachers’ time significantly for doing something
else, that can not be automated [9].

Related research, with focus on related surveys, is pre-
sented in Section The exact research questions and the
methodology used in this survey are described in Section [3l
Results are introduced in Section @l Selection of AA sys-
tems, also mentioned in Section [l are presented in Ap-
pendix [Al Conclusions, some recommendations based on
the data, and our expectations related to the future trends
in automatic assessment of programming assignments are
discussed in Section [Bl

2. RELATED WORK

Tools are an actively researched approach to support teach-
ing programming. For example, a survey by David Valentine
found that 18% of the papers published in SIGCSE confer-
ence between 1983 and 1993 were tools papers, whereas be-
tween 1994 and 2003 the number was 24.6% [78]. In the
Survey of Literature on the Teaching of Introductory Pro-
gramming by Pears et al. [55] from 2007, tools were the
single largest group among papers classified between tools,
curricula, pedagogy, and programming languages. Analysis
by Sheard et al. [68] from 2009 also supports the importance
of both assessment and tools. Top three themes in their clas-
sification of CS education research papers were: 1) ability
/ aptitude / understanding (40%), 2) teaching / learning /
assessment techniques (35%), and 3) teaching / learning /
assessment tools (9%).

Pears et al. have also summarized that tools that support
teaching programming can be divided into:

e visualization tools (e.g. ANIMAL [60], Jeliot [49], and

Tango [73]),

e automated assessment tools (e.g. TRAKLA2 [40], WEB-

CAT [16], and BOSS [37]),
e programming support tools (e.g. BlueJ [5]), and
e microworlds (e.g. Karel [54], and Alice [12]).

As stated before, our focus is on tools for automated assess-
ment of programming assignments.

There are a few surveys of AA in the context of program-
ming assignments. A Survey of Automated Assessment Ap-
proaches for Programming Assignments [I] by Kirsti Ala-
Mutka from 2005 concentrates on what features of program-
ming assignments are automatically assessed whereas Douce
et al. [14] review the history of the field from 1960s to 2005.
One of the main findings by Ala-Mutka is that dynamic anal-
ysis — that is, assessment based on executing the program
— is often used to assess functionality, efficiency, and test-
ing skills. Static checks that analyze the program without
executing it are used to provide feedback from style, pro-
gramming errors, software metrics, and even design. Tools
that cover both static and dynamic testing are also well pre-
sented in the survey. There are many features to assess, and
Ala-Mutka concludes that the selected AA approach should
always be pedagogically justified. Although we believe a lot
has been done since 2005, a recent survey from 2009 by Liang
et al. [42] provides little new to the work of Ala-Mutka.

ITiCSE 2003 working group led by Carter conducted a
survey among CS educators (not only programming) to get
a snapshot of AA practices and an analysis of respondents’
perceptions of automatic assessment [9]. One interesting
finding was that the teachers who were not familiar with AA
considered its potential more limited than the respondents
with experience from AA.

Not all programming exercises can be automatically as-
sessed. Several articles discussed how to design good as-
signments from the pedagogical standpoint. However, how
to deal with the restrictions set by the automatic assess-
ment is not often addressed. Forisek investigated Interna-
tional Olympiads in Informaticsﬂ (an event similar to the
ACM International Collegiate Programming ContestsE) and

"http://ioinformatics.org/
*http://cm.baylor.edu/

found that certain types of assignments they used were un-
suitable for automatic assessment [I7]. Forisek presents con-
crete examples of bad assignments (i.e easy to cheat tests)
and heuristics on how to detect them. Greening, on the
other hand, suggests that programming assignments should
be more open in nature instead of satisfying a strict set of
specifications often required by automatic assessment [25].
Furthermore, we believe that the very fact that the assess-
ment is automatic is likely to change how some students ap-
proach the exercise. Knowingly submitting a weak or even
incorrect solution that gets accepted by a machine is quite
likely more socially acceptable than trying to cheat a person.

Some of the research outside CS education research will
also help us understand when to apply AA and when not to.
For example, what kind of problems in code can be detected
automatically and what not has been investigated (e.g. [43]).

3. RESEARCH QUESTION AND METHOD

Based on the previous section, we conclude that the trends
and improvements in automatic assessment of programming
assignments from the last five years have not been system-
atically collected. Thus, the following research questions are
addressed in this paper:

1. What are the features of automatic assessment systems
reported in the literature after 200477

2. What future directions are indicated?

To answer the questions, a systematic literature review
was carried out. This means that an explicit procedure in
selecting the systems and papers was applied (see [7] for
details): to be included, a paper must have presented an
AA system providing summative, numerical feedback from
programming assignments or described results from using
such system.

By programming assignments we mean assignments where
students write code and submit it for assessment. Therefore
AA of diagrams (e.g. [76]), AA of algorithm simulation (e.g.
[40]), and other visualization based approaches (e.g. pro-
viding formative feedback based on visualizations) are not
included. In addition, we only included systems where first
hand experience was reported. This means that classical
systems often mentioned in the related work section (e.g.
CourseMarker [30], Assyst [34], etc.) are left out — unless
experiences from those systems were reported in the litera-
ture we surveyed.

We collected the data by searching for phrases (‘auto-
matic’ OR ’automated) AND (’assessment’ OR ’grading’)
AND ’programming’ from the conference proceedings and
journals through ACM Digital Library and IEEE Xplore.
We then applied the inclusion criteria to the abstracts and
finally read all the remaining papers. Search terms were
collectively decided after first manually examining (read-
ing the abstract and scanning the rest) all the articles of
ITiCSE proceedings and three journals: Computer Science
Education, Olympiads in Informatics, and Transactions on
Computing Education (formerly Journal on Educational Re-
sources in Computing) between 2006 and 2010.

Because of our inclusion criteria, not all of the systems
included in this survey are first published after 2005. A

32005 is when the survey of Ala-Mutka was carried out.

http://ioinformatics.org/
http://cm.baylor.edu/

system might have been published earlier but an evaluation
study or something similar after 2005.

We applied an iterative process to find the consensus about
how to group features of the systems (i.e. subsections of
Section 4). We read a selection of papers, made the first
version of categories, read more papers and revised the cat-
egories. This was repeated until no significant features lead-
ing into new categories were found. Some of our results are
explained by our background in automated assessment. As
a short summary, our attitudes towards automation are pos-
itive, we have all used AA several years in our courses, and
we have been developing AA and other educational systems.

4. RESULTS

In this section, we introduce the features identified in the
literature survey. Systems are cited, but the focus is on
features, not on systems.

4.1 Programming Languages

A majority of the systems are either targeted only for Java
or have support for Java. This fits well with the trend of Java
being one of the most used introductory programming lan-
guages. Other popular languages supported by the systems
include C/C++, Python, and Pascal. Pascal was especially
used in most of the competition platforms, where a typical
language support also included C/C++ and Java. In ad-
dition, we found examples of not so main stream teaching
languages like Assembler [36] [43] and shell scripts [70].

Some of the systems are language independent. Especially
if the assessment is based on output comparison, any lan-
guage that can be executed on the same environment can
be automatically assessed after the system is configured to
compile and execute solutions in that language.

4.2 Learning Management Systems

Extending the existing learning management systems (LMS)

like Moodld] to better fit into the special needs of CS ed-
ucation seems to draw increasing interest (e.g. [56l [62) [63],
the forthcoming ITiCSE’10 working group, and many oth-
ers). One argument supporting LMS—AA integration is to
avoid reimplementing all the course management features.
As a LMS hosting several (not only programming) courses
has a huge number of users, it is a tempting target for at-
tackers. Malicious code executed in such an environment
is always a serious threat. Therefore, securing AA systems
integrated into LMSs is extremely important. Despite the
challenges, we believe that there are more pros than cons
in this approach and that there is an increasing demand to
bring automatically assessed exercises into LMSs.

We found the following AA extensions to LMSs: CTPrac-
ticals [27] to bring VHDL and Matlab exercises into Moo-
dle, Automatic Grader [74] to assess students’ Java assign-
ments in Sakaﬂ AutoGrader [29] [51] to support Java assign-
ments in Cascaddd, WeBWorK-JAG [21} 22, 23] to bring au-
tomatically assessed Java exercises into WeBWorKEL SISA-
EMU [36] to provide Assembler programming assignments
through Moodle, and finally VERKKOKE [2] to bring socket
programming and routing into any LMS with SCORM sup-

“http://moodle.org/
http://sakaiproject.org/
Shttp://www.cascadelms.org/
"nttp://webwork.maa.org/

port (e.g. Moodle). In addition, EduComponents [3| [4]
brings programming exercises to Ploneﬁ, a content manage-
ment system, not a fully featured LMS.

4.3 Defining Tests

Assessing the functionality of students’ code is still the
most often used approach to grade programs. The ways to
do this can be divided between the use of industrial testing
tools and various specialized solutions. Examples of using
industrial tools were:

e XUnit based approaches were used in several systems
(e.g. [BL[72]). In some cases students even created their
own tests with JUnit [I5].

e Acceptance testing frameworks, (e.g. EasyAc-
cept [66, [67]) where tests are defined in a natural-
language-like scripting language. Tests are easy-to-
read requirement specifications as well as used for the
assessment at the same time.

e Webtesting frameworks like Watil] in AWAT [75]
and Seleniunﬂ in Electronic Commerce Virtual Lab-

oratory [I1].

Specialized solutions included:

e Output comparison is the traditional approach used
by many of the systems we found. Survey of Ala-
Mutka [I] already reported several variations of out-
put comparison including running the model solution
and student’s code side by side and the use of regular
expressions to match the output.

e Scripting can mean almost everything, and at the
same time it is the most commonly reported way to
define tests. For example, a script can be a shell script
compiling the program, running it, and comparing the
output to a file containing the expected output.

e Experimental approaches like comparing program
graphs of a student’s solution to the pool of known
correct answers [50}, 80] or deriving test cases with a
model checker [33] were also reported.

4.4 Resubmissions

Practice is important in learning programming and there
should be room for mistakes and learning from them. AA
can help as it can give feedback despite the limited human re-
sources. However, to prevent mindless trial-and-error prob-
lem solving, the number of resubmissions should be con-
trolled [44]. Here are some examples of how the problem of
trial-and-error can be tackled.

e Limiting the number of submissions, in addition
to having deadlines, is the trivial approach supported
by most of the current systems.

e Limiting the amount of feedback is another clas-
sical way to force students think after a failed submis-
sion. However, this can also create confusion among
students. Especially, students not familiar with AA
(who do not trust AA yet) may feel that the feedback

Shttp://plone.org/
9http://watir.com/
Ohttp://seleniumhq.org/

http://moodle.org/
http://sakaiproject.org/
http://www.cascadelms.org/
http://webwork.maa.org/
http://plone.org/
http://watir.com/
http://seleniumhq.org/

provided by the system is erroneous if they are not
able to understand why their submission was judged

wrong [26].

e Compulsory time penalty after each submission
can be used to direct students behavior [I]. Moreover,
length of this penalty can grow exponentially after each
failed attempt [35].

e Making each exercise slightly different is an in-
teresting concept used in QuizPACK by allowing pa-
rameterized, automatically assessed random assignments
for C programming [§]. Trial-and-error makes no sense
when you need to start from scratch to submit again.

e Programming contests provide a completely alter-
native approach where the assignment specification is
visible only for a short period of time during which
the assignment needs to be completed while competing
against time (and others). This approach is adopted to
education, for example, in Mooshak [26]. The competi-
tion aspect has been proven to be an excellent motiva-
tion for the students [4I] but also generates a number
of problems. How to teach students good scheduling
of software development process if they are encouraged
to perform as fast as possible at least partly regardless
of the quality of the work?

e Various hybrid approaches and modifications are
also possible. For example, Marmoset [72] supports
both unlimited and limited number of submissions.
First, there is a public test set to check the basic func-
tionality. These tests can always be executed and re-
peating submissions are not penalized. Second, there
are release tests that can only be asked n-times. Feed-
back from the release tests is also limited to force stu-
dents to think before asking tests to be executed.

4.5 Possibility for Manual Assessment

It is often a good idea to combine both manual and au-
tomated assessment. Teaching assistants (TAs) can provide
extra feedback by manually assessing a submission or they
can override the grades, etc. From the tools we surveyed,
we were able to identify two levels of manual intervention
(no support for manual intervention being the third).

e To enable the teacher to view the student sub-
missions is the lightest way to support manual inter-
vention. In this approach, the tool itself does not pro-
vide any features for the marking but at least makes it
possible to manually assess the same submission. Of-
ten the same effect can be achieved by logging into the
assessment system and fetching the submissions from
the database or filesystem where they are stored. How-
ever, supporting this through the AA system makes it
possible to separate the roles of TAs from administra-
tors of the AA system.

e Combining manual and automatic feedback means
TAs feedback and automated assessment can both ex-
ist at the same time and support each others. This is
supported in Web-Cat [16], for example.

None of the systems clearly described that they would
allow TAs to completely override the automatic feedback

but we still expect some systems to support this. However,
this can easily create confusion among both teachers and
learners if the origins of the grade are not transparent.

4.6 Sandboxing

Since the programming assignments are typically graded
by running the students’ solutions on the server side, se-
curing the server against possibly malicious or just incorrect
code is important. A good discussion on the possible attacks
against a grading server can be found in [I8]. However, as
important as this topic is, a large portion of the included
articles ignored this. The following approaches to secure
execution of students’ code were mentioned in the articles:

e Proper sandboxing. Relying on existing solutions
to securely run programs is a common approach. This
can be done by using multiple tools like Systrace (used
in EduComponents [3]), linux security module (used
in [48]), Java security policy (used in [48]), ptrace
(used in Moe [40]), and chroot (used in CTPracti-

cals [27]).

e Static analysis. Security can also be addressed by us-
ing custom solutions. For example, Algorithm Bench-
mark uses regular expressions to try to filter out ma-
licious code [10].

e Grading on the client. Some systems deal with
sandboxing by doing the grading on the client side
in students’ own computers. Mailing It In [65] uses
client’s email software to launch tests on client side,

whereas E-Commerce virtual laboratory [I1] uses Selenium-

RC to push tests back to the client that did the sub-
mission.

Additional security feature implemented in some systems
is to have a different server for running the student programs
instead of doing it all on the same machine as the rest of the
system. This is done, for example, by EduComponents [3].

In addition to securing AA systems, sandboxing can help
when assessing the performance of students’ programs. Sand-
boxes can be configured to limit the available memory or
CPU time to ensure assessed solutions are efficient enough

(e.g. 27, [79)).
4.7 Distribution and Availability

It is surprising, and quite disappointing, to see how few
systems are open-source, or even otherwise (freely) available.
In many papers, it is stated that a prototype was developed
but we were not able to find the tool. In some cases, a
system might be mentioned to be open source but you need
to contact the authors to get it.

4.8 Specialty

Quite often the driving force for the development of a
completely new tool is a revolutionary idea of something
that has not yet been done. Or at least this is the case with
tools that get researched and published. Specialities of AA
systems identified during the survey included:

e Automatic assessment of GUIs has been identi-
fied already in the survey of Douce [I4] and is still of
interest. New systems are still developed [24] and the
existing ones are extended to meet the special require-
ments of GUI exercises [77].

SQL tutoring systems have existed since the late 90’s.
New systems for this specialty were recognized also in

this survey (e.g. [13][38])

e Concurrent programming assignments are often ex-
tremely error prone and problems may be hard to de-
tect. Testing concurrency is demanding and special-
ized tools are developed to help (e.g. [52]).

e Web-programming and testing both functionality
and security of the websites students implement is get-
ting more attention together with the web-programming
getting a stronger position in the curricula. These
systems are typically testing a web site (HTML +
JavaScript) ignoring how the server side of the site

is implemented (e.g. [IT} 19} 28] 32} [75]).

Letting students do the quality assurance, either
by writing tests for themselves (e.g. [T7]) or reviewing
code of others (e.g. [61]) is often well grounded to the
pedagogical needs.

S. DISCUSSION AND CONCLUSIONS

In this paper, we have surveyed the recent developments
of automatic assessment tools for programming assignments.
We have done this by systematically collecting relevant ar-
ticles published in years 2006-2010 to get a sense what has
happened in the field since the previous literature reviews
on the topic were conducted. The systems included can be
roughly divided into two categories: 1) automatic assess-
ment systems for programming competitions and 2) auto-
matic assessment systems for (introductory) programming
education.

To answer our first research questions, we have discussed
the key features of AA systems in SectionEl From these, we
think that the differences in how tests are defined, how re-
submissions are handled, and how the security is guaranteed
were the most significant.

Based on the data we collected, it is possible to make
some recommendations how new AA systems could get more
widely adopted. First, we recommend that authors describ-
ing new systems should explain more explicitly how the sys-
tem actually works and provide more examples. For ex-
ample, instead of stating that the assessment is based on
scripts, examples should be provided.

In addition, security of the assessment systems should get
more attention. Use of proper sandboxing based on exist-
ing security solutions should be encouraged and use of home
baked static analysis should be avoided. The latter can leave
the system vulnerable, since, for example, the filtering of
code using regular expressions is error-prone. Ultimately the
security needs to be provided in a way that makes installing
the system as easy as possible without compromising secu-
rity. However, configuring a sandbox can be complicated.
Preferably, initial security configuration should not rely on
teachers’ skills. For example, writing a proper Java security
policy is doable (although letting AA system to provide such
policies is better) but setting up a secure linux playground
with chroot, for example, is demanding and teachers might
be tempted to make shortcuts. In fact, we believe that lack
of sandboxing, or the difficulties in configuring the sandbox,
is often one of the obstacles in adopting a system.

The lack of open-source systems might be one of the rea-
sons for the constant development of new tools — that are

also likely to remain in-house. We understand people do not
want to publish something unfinished but at the same time
this slows down new ideas from spreading wider. Thus, we
argue that by open-sourcing the existing tools to some popu-
lar online version control repository like GitHuHY or Google
Codelg, the tools could be much more willingly adopted by
others.

To answer our second research question, we expect new
research to emerge from the following fields, from where the
first steps were identified in this survey:

e Integrating automatic assessment into LMSs. As an-
other possible path, some of the assessment systems
can grow into LMSs if they are modular enough and if
they get the momentum behind them. For example, we
see that Web-CAT with the various assessment mod-
ules already implemented into it is a good candidate
to become a CS specific LMS.

e Putting more effort into security of automatic assess-
ment systems. This is also related to the LMS inte-
gration because having multiple courses hosted on one
platform makes this a more tempting target to hack.

e Automatic assessment of web applications students im-
plement. This can be seen to continue the GUI and
SQL testing efforts that have longer traditions. The
new aspect we expect to get more importance is secu-
rity /penetration testing of students’ web applications.

There seems to be a steady interest in developing new
automatic assessment tools. Sometimes the need to imple-
ment yet another system can be challenged and one should
ask whether the new feature could be added directly into
an existing open source system as in Web-CAT [(7], for
example. In addition, to increase the adoption of existing
systems and thus avoiding the reinvention of the wheel, we
strongly suggest automatic assessment system developers to
make their systems open source making it easier for others
to contribute.

6. FUTURE WORK

Classification presented in Section 4 can be further im-
proved. For example this could be a starting point for a
more formal Delphi study [64] with more experts deciding
on the categories. Outcome could result in a taxonomy on
automatic assessment of programming assignments.

In this survey, we had quite narrow scope. There are many
systems closely related to AA we did not cover: systems de-
signed for formative/visual feedback (e.g. [31]), peer review
systems (e.g. [71]), and systems to provide feedback on mis-
conceptions and problem solving strategies (e.g. [59]) — to
name a few. Identifying the types of systems that can coop-
erate in an AA setup is essential for understanding how AA
systems should be improved from the technical perspective.

Many of the papers we surveyed reported educational ex-
perimentations and results of comparing different approaches
in automatic assessment. Combining those results with the
features of AA systems (presented in this paper) is some-
thing we are looking next. This is important for improving
AA systems from the pedagogical perspective.

"http://github. com/
12http://code.google. com

http://github.com/
http://code.google.com

7.
(1]

(2]

(10]

(11]

(12]

(13]

(14]
(15]

(16]

(17]
(18]

(19]

(20]

REFERENCES

K. Ala-Mutka. A survey of automated assessment approaches
for programming assignments. Computer Science Education,
15(2):83-102, 2005.

A. Alstes and J. Lindqvist. Verkkoke: learning routing and
network programming online. In ITiCSE ’07: Proceedings of
the 12th annual SIGCSE Conf. on Innovation and technology
in computer science education, pages 91-95, New York, NY,
USA, 2007. ACM.

M. Amelung, P. Forbrig, and D. Résner. Towards generic and
flexible web services for e-assessment. In ITiCSE ’08:
Proceedings of the 13th annual Conf. on Innovation and
technology in computer science education, pages 219-224, New
York, NY, USA, 2008. ACM.

M. Amelung, M. Piotrowski, and D. Résner. Educomponents:
experiences in e-assessment in computer science education. In
ITICSE ’06: Proceedings of the 11th annual SIGCSE Conf.
on Innovation and technology in computer science education,
pages 88-92, New York, NY, USA, 2006. ACM.

D. J. Barnes and M. Kélling. Objects First with Java - A
Practical Introduction using BlueJ, Thid edition. Prentice
Hall / Pearson Education, 2006.

J. Biggs and C. Tang. Teaching for Quality Learning at
University : What the Student Does (3rd Edition). Open
University Press, 2007.

P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and
M. Khalil. Lessons from applying the systematic literature
review process within the software engineering domain. J. Syst.
Softw., 80(4):571-583, 2007.

P. Brusilovsky and S. Sosnovsky. Individualized exercises for
self-assessment of programming knowledge: An evaluation of
quizpack. J. Educ. Resour. Comput., 5(3):6, 2005.

J. Carter, J. English, K. Ala-Mutka, M. Dick, W. Fone,

U. Fuller, and J. Sheard. ITICSE working group report: How
shall we assess this? SIGCSE Bulletin, 35(4):107-123, 2003.
M.-Y. Chen, J.-D. Wei, J.-H. Huang, and D. T. Lee. Design
and applications of an algorithm benchmark system in a
computational problem solving environment. In ITICSE ’06:
Proceedings of the 11th annual SIGCSE Conf. on Innovation
and technology in computer science education, pages 123-127,
New York, NY, USA, 2006. ACM.

J. Coffman and A. C. Weaver. Electronic commerce virtual
laboratory. In SIGCSE ’10: Proceedings of the 41st ACM
technical symposium on Computer science education, pages
92-96, New York, NY, USA, 2010. ACM.

S. Cooper, W. Dann, and R. Pausch. Alice: a 3-d tool for
introductory programming concepts. In CCSC ’00:
Proceedings of the fifth annual CCSC northeastern Conf. on
The journal of computing in small colleges, pages 107-116, ,
USA, 2000. Consortium for Computing Sciences in Colleges.
M. de Raadt, S. Dekeyser, and T. Y. Lee. Do students sqlify?
improving learning outcomes with peer review and enhanced
computer assisted assessment of querying skills. In Proceedings
of the 6th Baltic Sea Conf. on Computing education research,
pages 101-108, New York, NY, USA, 2006. ACM.

C. Douce, D. Livingstone, and J. Orwell. Automatic test-based
assessment of programming: A review. J. Educ. Resour.
Comput., 5(3):4, 2005.

S. H. Edwards and M. A. Pérez-Quiniones. Experiences using
test-driven development with an automated grader. J. Comput.
Small Coll., 22(3):44-50, 2007.

S. H. Edwards and M. A. Pérez-Quinones. Web-cat:
automatically grading programming assignments. In ITiCSE
’08: Proceedings of the 13th annual Conf. on Innovation and
technology in computer science education, pages 328-328, New
York, NY, USA, 2008. ACM.

M. Forisek. On the suitability of programming tasks for
automated evaluation. Informatics in education, 5(1):63-76,
2006.

M. Forisek. Security of programming contest systems. In
Informatics in Secondary Schools, Evolution and
Perspectives, Vilnius, Lithuania, 2006.

X. Fu, B. Peltsverger, K. Qian, L. Tao, and J. Liu. Apogee:
automated project grading and instant feedback system for web
based computing. In SIGCSE ’08: Proceedings of the 39th
SIGCSE technical symposium on Computer science
education, pages 77-81, New York, NY, USA, 2008. ACM.

G. Garcia-Mateos and J. L. Ferndndez-Aleman. A course on
algorithms and data structures using on-line judging. SIGCSE
Bull., 41(3):45-49, 2009.

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

35]

(36]

(37]

38]

O. Gotel and C. Scharff. Adapting an open-source web-based
assessment system for the automated assessment of
programming problems. In WBED’07: Proceedings of the sixzth
Conf. on IASTED International Conf. Web-Based Education,
pages 437-442, Anaheim, CA, USA, 2007. ACTA Press.

O. Gotel, C. Scharff, and A. Wildenberg. Extending and
contributing to an open source web-based system for the
assessment of programming problems. In PPPJ ’07:
Proceedings of the 5th international symposium on Principles
and practice of programming in Java, pages 3-12, New York,
NY, USA, 2007. ACM.

O. Gotel, C. Scharff, and A. Wildenberg. Teaching software
quality assurance by encouraging student contributions to an
open source web-based system for the assessment of
programming assignments. SIGCSE Bull., 40(3):214-218, 2008.
G. R. Gray and C. A. Higgins. An introspective approach to
marking graphical user interfaces. In ITICSE ’06: Proceedings
of the 11th annual SIGCSE Conf. on Innovation and
technology in computer science education, pages 43—47, New
York, NY, USA, 2006. ACM.

T. Greening. Computer Science Educational Futures: The
Nature of 2020” Foresight. In Computer Science Education in
the 21st Century, pages 1-6. Springer Verlag, 1999.

P. Guerreiro and K. Georgouli. Combating anonymousness in
populous csl and cs2 courses. In ITICSE ’06: Proceedings of
the 11th annual SIGCSE Conf. on Innovation and technology
in computer science education, pages 812, New York, NY,
USA, 2006. ACM.

E. Gutiérrez, M. A. Trenas, J. Ramos, F. Corbera, and

S. Romero. A new moodle module supporting automatic
verification of vhdl-based assignments. Comput. Educ.,
54(2):562-577, 2010.

F. Gutierrez. Stingray: a hands-on approach to learning
information security. In SIGITE ’06: Proceedings of the 7th
Conf. on Information technology education, pages 53—58, New
York, NY, USA, 2006. ACM.

M. T. Helmick. Interface-based programming assignments and
automatic grading of java programs. In ITiCSE ’07:
Proceedings of the 12th annual SIGCSE Conf. on Innovation
and technology in computer science education, pages 63—67,
New York, NY, USA, 2007. ACM.

C. Higgins, T. Hegazy, P. Symeonidis, and A. Tsintsifas. The
coursemarker cba system: Improvements over ceilidh.
Education and Information Technologies, 8(3):287-304, 2003.
C. D. Hundhausen and J. L. Brown. An experimental study of
the impact of visual semantic feedback on novice programming.
J. Vis. Lang. Comput., 18(6):537-559, 2007.

W.-Y. Hwang, C.-Y. Wang, G.-J. Hwang, Y.-M. Huang, and

S. Huang. A web-based programming learning environment to
support cognitive development. Interacting with Computers,
20(6):524 — 534, 2008.

P. Thantola. Creating and visualizing test data from
programming exercises. Informatics in education, 6(1):81-102,
2007.

D. Jackson and M. Usher. Grading student programs using
assyst. In SIGCSE ’97: Proceedings of the twenty-eighth
SIGCSE technical symposium on Computer science
education, pages 335-339, New York, NY, USA, 1997. ACM.
T. Janhunen, T. Jussila, M. Jirvisalo, and E. Oikarinen.
Teaching Smullyan’s analytic tableaux in a scalable learning
environment. In Proceedings of the Fourth Finnish / Baltic
Sea Conf. on Computer Science Education, volume
TKO-42/04 of Research Report Series of Laboratory of
Information Processing Science, Helsinki University of
Technology, pages 85-94. Otamedia, December 2004.

D. Jimenez-Gonzalez, C. Alvarez, D. Lopez, J.-M. Parcerisa,

J. Alonso, C. Perez, R. Tous, P. Barlet, M. Fernandez, and

J. Tubella. Work in progress-improving feedback using an
automatic assessment tool. In Proceedings of 38th annual
Frontiers in Education Conf., pages S3B-9 ~T1A-10, oct.
2008.

M. Joy, N. Griffiths, and R. Boyatt. The BOSS online
submission and assessment system. In ACM Journal on
Educational Resources in Computing, volume 5, number 3,
September 2005. Article 2. ACM, 2005.

H. Ke, G. Zhang, and H. Yan. Automatic grading system on sql
programming. In Scalable Computing and Communications;
Eighth International Conf. on Embedded Computing, 2009.
SCALCOM-EMBEDDEDCOM’09. International Conf. on,
pages 537 —540, sept. 2009.

(39]

(40]

(41]

[42]

(43]

(44]

(45]

[46]

[47]

(48]

(49]

(50]

(51]

(52]

53]

(54]

(55]

(56]

(57]

(58]

(59]

[60]

R. Kolstad. Infrastructure for contest task development.
Olympiads in Informatics, 3:38—=59, 2009.

A. Korhonen, L. Malmi, and P. Silvasti. TRAKLA2: a
framework for automatically assessed visual algorithm
simulation exercises. In Proceedings of the Third Annual
Baltic Conf. on Computer Science Education, pages 48-56,
Joensuu, Finland, 2003.

T. Lehtonen. Javala — addictive e-learning of the java
programming language. In Koli Calling 2005 — Fifth Koli
Calling Conf. on Computer Science Education, pages 41-48,
2005.

Y. Liang, Q. Liu, J. Xu, and D. Wang. The recent development
of automated programming assessment. In Computational
Intelligence and Software Engineering, 2009. CiSE 2009.
International Conf. on, pages 1 -5, dec. 2009.

M. Lingling, Q. Xiaojie, Z. Zhihong, Z. Gang, and X. Ying. An
assessment tool for assembly language programming. In
Computer Science and Software Engineering, 2008, volume 5,
pages 882 —884, dec. 2008.

L. Malmi, V. Karavirta, A. Korhonen, and J. Nikander.
Experiences on automatically assessed algorithm simulation
exercises with different resubmission policies. Journal of
Educational Resources in Computing, 5(3), September 2005.
M. V. Miéntyld and C. Lassenius. Drivers for software
refactoring decisions. In ISESE ’06: Proceedings of the 2006
ACM/IEEE international symposium on Empirical software
engineering, pages 297-306, New York, NY, USA, 2006. ACM.
M. Mares. Perspectives on grading systems. Olympiads in
Informatics, 1:124-130, 2007.

M. Mares. Moe — design of a modular grading system.
Olympiads in Informatics, 3:60-66, 2009.

B. Merry. Using a linux security module for contest security.
Olympiads in Informatics, 3:67-73, 2009.

A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari. Visualizing
programs with Jeliot 3. In Proceedings of the International
Working Conf. on Advanced Visual Interfaces, pages 373 —
376, Gallipoli (Lecce), Italy, May 2004. ACM.

K. A. Naudé, J. H. Greyling, and D. Vogts. Marking student
programs using graph similarity. Comput. Educ.,
54(2):545-561, 2010.

P. Nordquist. Providing accurate and timely feedback by
automatically grading student programming labs. J. Comput.
Small Coll., 23(2):16-23, 2007.

R. Oechsle and K. Barzen. Checking automatically the output
of concurrent threads. In ITiCSE ’07: Proceedings of the 12th
annual SIGCSE Conf. on Innovation and technology in
computer science education, pages 43-47, New York, NY,
USA, 2007. ACM.

J. O’Kelly and J. P. Gibson. Robocode & problem-based
learning: a non-prescriptive approach to teaching programming.
In ITICSE ’06: Proceedings of the 11th annual SIGCSE
Conf. on Innovation and technology in computer science
education, pages 217-221, New York, NY, USA, 2006. ACM.
R. E. Pattis, J. Roberts, and M. Stehlik. Karel the robot (2nd
ed.): a gentle introduction to the art of programming. John
Wiley & Sons, Inc., New York, NY, USA, 1994.

A. Pears, S. Seidman, C. Eney, P. Kinnunen, and L. Malmi.
Constructing a core literature for computing education
research. SIGCSE Bulletin, 37(4):152-161, 2005.

A. Radenski. Digital csl study pack based on moodle and
python. In ITiCSE °08: Proceedings of the 13th annual Conf.
on Innovation and technology in computer science education,
pages 325-325, New York, NY, USA, 2008. ACM.

M. A. Revilla, S. Manzoor, and R. Liu. Competitive learning in
informatics: The uva online judge experience. Olympiads in
Informatics, 2:131-148, 2008.

P. Ribeiro and P. Guerreiro. Increasing the appeal of
programming contests with tasks involving graphical user
interfaces and computer graphics. Olympiads in Informatics,
1:139-164, 2007.

M. M. T. Rodrigo, R. S. Baker, M. C. Jadud, A. C. M. Amarra,
T. Dy, M. B. V. Espejo-Lahoz, S. A. L. Lim, S. A. Pascua,

J. O. Sugay, and E. S. Tabanao. Affective and behavioral
predictors of novice programmer achievement. In ITiCSE ’09:
Proceedings of the 14th annual ACM SIGCSE Conf. on
Innovation and technology in computer science education,
pages 156-160, New York, NY, USA, 2009. ACM.

G. Ro8ling and B. Freisleben. ANIMAL: A system for
supporting multiple roles in algorithm animation. Journal of
Visual Languages and Computing, 13(3):341-354, 2002.

(61]

(62]

(63]

(64]

65]

[66]

(67]

(68]

(69]

[70]

[71]

(72]

(73]

[74]

[75]

[76]

[77]

(78]

G. RoBling and S. Hartte. Webtasks: online programming
exercises made easy. SIGCSE Bull., 40(3):363-363, 2008.

G. RoBling, M. Joy, A. Moreno, A. Radenski, L. Malmi,

A. Kerren, T. Naps, R. J. Ross, M. Clancy, A. Korhonen,

R. Oechsle, and J. A. V. Iturbide. Enhancing learning
management systems to better support computer science
education. SIGCSE Bull., 40(4):142-166, 2008.

G. RoBling and T. Vellaramkalayil. A visualization-based
computer science hypertextbook prototype. Trans. Comput.
Educ., 9(2):1-13, 2009.

G. Rowe and G. Wright. The delphi technique as a forecasting
tool: issues and analysis. International Journal of Forecasting,
15(4):353-375, October 1999.

J. A. Sant. "mailing it in”: email-centric automated assessment.
In ITiCSE ’09: Proceedings of the 14th annual ACM SIGCSE
Conf. on Innovation and technology in computer science
education, pages 308-312, New York, NY, USA, 2009. ACM.
J. P. Sauvé and O. L. Abath Neto. Teaching software
development with atdd and easyaccept. In SIGCSE ’08:
Proceedings of the 39th SIGCSE technical symposium on
Computer science education, pages 542-546, New York, NY,
USA, 2008. ACM.

J. P. Sauvé, O. L. Abath Neto, and W. Cirne. Easyaccept: a
tool to easily create, run and drive development with
automated acceptance tests. In AST ’06: Proceedings of the
2006 international workshop on Automation of software test,
pages 111-117, New York, NY, USA, 2006. ACM.

J. Sheard, S. Simon, M. Hamilton, and J. Lénnberg. Analysis of
research into the teaching and learning of programming. In
ICER ’09: Proceedings of the fifth international workshop on
Computing education research workshop, pages 93—104, New
York, NY, USA, 2009. ACM.

M. Sitaraman, J. O. Hallstrom, J. White, S. Drachova-Strang,
H. K. Harton, D. Leonard, J. Krone, and R. Pak. Engaging
students in specification and reasoning: “hands-on”
experimentation and evaluation. In ITi:CSE ’09: Proceedings
of the 14th annual ACM SIGCSE Conf. on Innovation and
technology in computer science education, pages 50-54, New
York, NY, USA, 2009. ACM.

A. Solomon, D. Santamaria, and R. Lister. Automated testing
of unix command-line and scripting skills. In Information
Technology Based Higher Education and Training, 2006.
ITHET ’06. Tth International Conf. on, pages 120 —125, july
2006.

H. Sondergaard. Learning from and with peers: the different
roles of student peer reviewing. In ITiCSE ’09: Proceedings of
the 14th annual ACM SIGCSE Conf. on Innovation and
technology in computer science education, pages 31-35, New
York, NY, USA, 2009. ACM.

J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K.
Hollingsworth, and N. Padua-Perez. Experiences with
marmoset: designing and using an advanced submission and
testing system for programming courses. In ITICSE ’06:
Proceedings of the 11th annual SIGCSE Conf. on Innovation
and technology in computer science education, pages 13-17,
New York, NY, USA, 2006. ACM.

J. T. Stasko. TANGO: A framework and system for algorithm
animation. IEEE Computer, 23(9):27-39, 1990.

H. Suleman. Automatic marking with sakai. In SAICSIT ’08:
Proceedings of the 2008 annual research Conf. of the South
African Institute of Computer Scientists and Information
Technologists on IT research in developing countries, pages
229-236, New York, NY, USA, 2008. ACM.

M. Sztipanovits, K. Qian, and X. Fu. The automated web
application testing (awat) system. In ACM-SE 46: Proceedings
of the 46th Annual Southeast Regional Conf., pages 88-93,
New York, NY, USA, 2008. ACM.

P. G. Thomas, N. Smith, and K. G. Waugh. Computer assisted
assessment of diagrams. In ITiCSE ’07: Proceedings of the
12th annual SIGCSE Conf. on Innovation and technology in
computer science education, pages 68-72, New York, NY,
USA, 2007. ACM.

M. Thornton, S. H. Edwards, R. P. Tan, and M. A.
Pérez-Quinones. Supporting student-written tests of gui
programs. In SIGCSE ’08: Proceedings of the 39th SIGCSE
technical symposium on Computer science education, pages
537-541, New York, NY, USA, 2008. ACM.

D. W. Valentine. CS educational research: a meta-analysis of
SIGCSE technical symposium proceedings. In SIGCSE ’04:
Proceedings of the 35th SIGCSE Technical Symposium on

Computer Science Education, pages 255-259, New York, NY,
USA, 2004. ACM Press.

[79] T. Verhoeff. Programming task packages: Peach exchange
format. Olympiads in Informatics, 2:192-207, 2008.

[80] T. Wang, X. Su, Y. Wang, and P. Ma. Semantic
similarity-based grading of student programs. Inf. Softw.
Technol., 49(2):99-107, 2007.

APPENDIX

A. LIST OF TOOLS

This appendix briefly describes publicly available (to down-
load or with a demo site where to experiment) tools found
in this survey. Many papers did not have explicit statement
about the availability of the system, and in many cases we
failed to find a site. There were also cases where university’s
public version control where the system was distributed no
longer existed. It should be noted that some of the tools we
failed to find could be available by asking the authors. This
was not done. References found in this survey and the URL
from where more information can be retrieved are mentioned
for each system.

AutoGrader [29] [51] is a subproject of Cascade LMS. It
has been used to assess Java, but according to authors it
can be extended to other languages. Tests are executed
through Java reflection similarly to what JUnit does.
http://www.cascadelms.org/autograder/| (GPL like)

AWAT [75] is an environment for web programming as-
signments where students only submit an URL of a
site they developed. Teacher defines which components
should exist on the web-page and tests by using the
Watir Ruby library both combined into an Excel sheet.
Testing is then performed by using Internet Explorer
from the submission server.

Open source, contact authors

CTPracticals [27] is a Moodle module to bring automat-
ically assessed VHDL exercises into Moodle. Exter-
nal test script and sandboxing are both configurable
through the Moodle UI. The framework can also be ex-
tended to other programming languages. For example,
there are Matlab exercises on the demo site.
http://guac.ac.uma.es/demo|(login credentials in [27])

EasyAccept [66]67] framework provides a natural-language-

like scripting language to write tests for Java programs.
Requirements are presented in a form of acceptance
tests.

http://easyaccept.sourceforge.net/| (GPL)

EduComponents [3, [4] is a set of components to the
Plone CMS for creation, management and assessment
of programming assignments. It has different backends
for different programming languages which allow (de-
pending on the language) unit testing, comparison to a
model answer or more formally defined testing.
http://plone.org/products/ecautoassessmentbox/
(GPL)

Linuxgym [70] supports exercises and examinations of
unix scripting skills. An extensive exercise definition
language is also included.
http://linuxgym.com/| (GPL)

Moe [46] [47] (originally MO-eval) is a modular environ-
ment for programming contests with sandbox, queue
manager, and submitter for managing submissions, and

different graders (that can be combined). The aim is
make various modules interchangeable.
http://mj.ucw.cz/moe/| (GPL2)

Mooshak [20] 26, 58] has its origins in programming con-
tests, although it has also been used in teaching. One
of the specialties of Mooshak is that results of the as-
sessment can be publicly shown to other students.

http://code.google.com/p/mooshak/|(Artistic License/GPL)

Peach?® [79] is a highly configurable system for program-
ming education and contest hosting.
http://peach3.nl/| (Artistic License v2)

ProtoAPOGEE [I9] is a prototype of a proposed sys-
tem to grade web sites like AWAT. APOGEE relies on
Watir test library and it can also take series of screen-
shots from the web site being assessed. Screenshots can
then be used as feedback to explain why a test failed.
http://vlab.gsw.edu/Projects/APOGEE/|(sources and
video for academic research or evaluation)

Resolver [69] combines formal verification and traditional
programming assignments. There are exercises where
students need to demonstrate their understanding of
formal specifications by writing tests and exercises where
students write programs verified against formally ex-
pressed contracts.
http://www.cs.clemson.edu/ resolve/ (GPL3)

RoboCode [53] supports Java and .NET assignments where
students’ programs compete with each other. Grades
can be based on the results of the competition.
http://robocode.sourceforge.net/ (Eclipse Public Li-
cense)

USACO’s [39] competition hosting environment has been
developed by the USA Computing Olympiad. The sys-
tem also offers web based problem development tools
to aid in creating competition problems.
http://train.usaco.org/usacogate| (demo)

UVA Online Judge [57] is mainly intended as a program-
ming contest training site. Users can practice on the
large number of existing problems and submit their an-
swers in multiple languages. It is also used for hosting
online programming competitions.
http://uva.onlinejudge.org| (demo)

VERKKOKE [2] is an online teaching environment for
socket programming/routing. It generates individual
programming assignments which the student completes
and submits. One of the specialties is the SCORM inte-
gration with LMS systems (e.g. Moodle and Optima).
http://www.tml.tkk.fi/Research/VERKKOKE/| (MIT)

Web-CAT [I5][77] is a system where students are required
not only to submit source code, but also unit test their
own code. Part of the grade is based on the test cover-
age achieved by students’ own tests. Web-CAT has a
plugin architecture for different graders, static analysis,
support for other languages, etc.
http://web-cat.cs.vt.edu/WCWiki| (Affero GPL)

WeBWorK-JAG (Java auto-grader) [2I], 22 23] is an ex-
tension module to the WeBWorK exercise delivery plat-
form. The module allows checking Java programs with
JUnit.
http://csis.pace.edu/ scharff/webwork

http://www.cascadelms.org/autograder/
http://guac.ac.uma.es/demo
http://easyaccept.sourceforge.net/
http://plone.org/products/ecautoassessmentbox/
http://linuxgym.com/
http://mj.ucw.cz/moe/
http://code.google.com/p/mooshak/
http://peach3.nl/
http://vlab.gsw.edu/Projects/APOGEE/
http://www.cs.clemson.edu/~resolve/
http://robocode.sourceforge.net/
http://train.usaco.org/usacogate
http://uva.onlinejudge.org
http://www.tml.tkk.fi/Research/VERKKOKE/
http://web-cat.cs.vt.edu/WCWiki
http://csis.pace.edu/~scharff/webwork

	Introduction
	Related Work
	Research Question and Method
	Results
	Programming Languages
	Learning Management Systems
	Defining Tests
	Resubmissions
	Possibility for Manual Assessment
	Sandboxing
	Distribution and Availability
	Specialty

	Discussion and Conclusions
	Future Work
	References
	List of Tools

